Technical Note: Determination of aerosol optical properties by a calibrated sky imager

被引:30
作者
Cazorla, A. [1 ,2 ]
Shields, J. E. [3 ]
Karr, M. E. [3 ]
Olmo, F. J. [3 ]
Burden, A. [1 ,2 ]
Alados-Arboledas, L. [1 ,2 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Fis Aplicada, E-18071 Granada, Spain
[2] Junta de Andalucia Univ Granada, CEAMA, Granada 18071, Spain
[3] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA
关键词
UV ERYTHEMAL IRRADIANCE; 2003; HEAT-WAVE; SOUTHEASTERN SPAIN; ATMOSPHERIC AEROSOLS; PRINCIPAL-PLANE; APPROXIMATION; NETWORK;
D O I
10.5194/acp-9-6417-2009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The calibrated ground-based sky imager developed in the Marine Physical Laboratory, the Whole Sky Imager (WSI), has been tested with data from the Atmospheric Radiation Measurement Program (ARM) at the Southern Great Plain site (SGP) to determine optical properties of the atmospheric aerosol. Different neural network-based models calculate the aerosol optical depth (AOD) for three wavelengths using the radiance extracted from the principal plane of sky images from the WSI as input parameters. The models use data from a CIMEL CE318 photometer for training and validation and the wavelengths used correspond to the closest wavelengths in both instruments. The spectral dependency of the AOD, characterized by the Angstrom exponent alpha in the interval 440-870 nm, is also derived using the standard AERONET procedure and also with a neural network-based model using the values obtained with a CIMEL CE318. The deviations between the WSI derived AOD and the AOD retrieved by AERONET are within the nominal uncertainty assigned to the AERONET AOD calculation (+/-0.01), in 80% of the cases. The explanation of data variance by the model is over 92% in all cases. In the case of alpha, the deviation is within the uncertainty assigned to the AERONET alpha (+/-0.1) in 50% of the cases for the standard method and 84% for the neural network-based model. The explanation of data variance by the model is 63% for the standard method and 77% for the neural network-based model.
引用
收藏
页码:6417 / 6427
页数:11
相关论文
共 31 条
[1]   Neural network for the estimation of UV erythemal irradiance using solar broadband irradiance [J].
Alados, I. ;
Gomera, M. A. ;
Foyo-Moreno, I. ;
Alados-Arboledas, L. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2007, 27 (13) :1791-1799
[2]   Estimating UV erythemal irradiance by means of neural networks [J].
Alados, I ;
Mellado, JA ;
Ramos, F ;
Alados-Arboledas, L .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2004, 80 (02) :351-358
[3]   THE PARAMETERS OF ATMOSPHERIC TURBIDITY [J].
ANGSTROM, A .
TELLUS, 1964, 16 (01) :64-75
[4]   Using a Sky Imager for aerosol characterization [J].
Cazorla, A. ;
Olmo, F. J. ;
Alados-Arboledas, L. .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (11) :2739-2745
[5]   Development of a sky imager for cloud cover assessment [J].
Cazorla, A. ;
Olmo, F. J. ;
Alados-Arboledasl, L. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2008, 25 (01) :29-39
[6]  
CAZORLA A, 2005, DETERMINATION CLOUD, P27
[7]  
Cormen T.H., 2001, Introduction To Algorithms, Vsecond
[8]   Non-spherical aerosol retrieval method employing light scattering by spheroids [J].
Dubovik, O ;
Holben, BN ;
Lapyonok, T ;
Sinyuk, A ;
Mishchenko, MI ;
Yang, P ;
Slutsker, I .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (10) :54-1
[9]   Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust [J].
Dubovik, Oleg ;
Sinyuk, Alexander ;
Lapyonok, Tatyana ;
Holben, Brent N. ;
Mishchenko, Michael ;
Yang, Ping ;
Eck, Tom F. ;
Volten, Hester ;
Munoz, Olga ;
Veihelmann, Ben ;
van der Zande, Wim J. ;
Leon, Jean-Francois ;
Sorokin, Michael ;
Slutsker, Ilya .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D11)
[10]  
Foster P., 2007, CLIMATE CHANGE 2007