Functional residues serve a dominant role in mediating the cooperativity of the protein ensemble

被引:55
作者
Liu, Tong
Whitten, Steven T.
Hilser, Vincent J. [1 ]
机构
[1] Univ Texas, Med Branch, Dept Biochem & Mol Biol, Galveston, TX 77555 USA
[2] Univ Texas, Med Branch, Sealy Ctr Struct Biol & Mol Biophys, Galveston, TX 77555 USA
关键词
COREX analysis; energetic coupling; native state ensemble; thermodynamic linkage;
D O I
10.1073/pnas.0607132104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conformational fluctuations in proteins have emerged as a potentially important aspect of biological function, although the precise relationship and the implications have yet to be fully explored. Numerous studies have reported that the binding of ligand can influence fluctuations. However, the role of the binding site in mediating these fluctuations is not known. Of particular interest is whether in addition to serving as structural scaffolds for recognition and catalysis, active-site residues may also play a role in modulating the cooperative network. To address this question, we employ an experimentally validated ensemble-based description of proteins to elucidate the extent to which perturbations at different sites can influence the cooperative network in the protein. Applying this method to a database of test proteins, it is found statistically that binding sites are located in regions most able to affect the cooperative network, even for cooperative interactions between residues distant to the binding sites. This indicates that the conformational manifold under native conditions is determined by the network of cooperative interactions within the protein and suggests that proteins have evolved to use these conformational fluctuations in carrying out their functions. Furthermore, because the energetic coupling pattern calculated for each protein is robust and relatively insensitive to sequence, these studies further suggest that binding sites evolved in regions of the protein that are inherently poised to take advantage of the fluctuations in the native structure.
引用
收藏
页码:4347 / 4352
页数:6
相关论文
共 52 条