The contribution of neuroimaging techniques to the understanding of supraspinal pain circuits: Implications for orofacial pain

被引:24
作者
de Leeuw, R
Albuquerque, R
Okeson, J
Carlson, C
机构
[1] Univ Kentucky, Orofacial Pain Ctr, Lexington, KY 40536 USA
[2] Univ Kentucky, Dept Psychol, Lexington, KY 40506 USA
来源
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY AND ENDODONTOLOGY | 2005年 / 100卷 / 03期
关键词
D O I
10.1016/j.tripleo.2004.11.014
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
The aim of this article was to give an overview of the current knowledge of supraspinal pain mechanisms derived from neuroimaging studies, and to present data related to chronic orofacial pain disorders. The available studies implied that the anterior cingulate cortex plays a role in the emotional-affective component of pain, as well as in pain-related attention and anxiety. The somatosensory cortices may be involved in encoding spatial, temporal, and intensity aspects of noxious input. The insula may mediate both affective and sensory-discriminative aspects of the pain experience. The thalamus appears to be a multifunctional relay system. The prefrontal cortex has been implied in the pain-related attention processing; it does not have intensity encoding properties. Chronic pain conditions were associated with increased activity in the somatosensory cortices, anterior cingulate cortex, and the prefrontal cortex, and with decreased activity in the thalamus. Few neuroimaging studies used experimental stimuli to the trigeminal system or included orofacial pain patients. However, the available studies appeared to be in agreement with those using stimuli to other body parts and those concerning other chronic pain conditions. Overall, the available data suggest that chronic (orofacial) pain states may be related to a dysfunctional brain network and may involve a compromised descending inhibitory control system. The somatosensory cortices, anterior cingulate cortex, thalamus, and prefrontal cortex may play a vital role in the pathophysiology of chronic pain and should be the main focus of future neuroimaging studies in chronic pain patients.
引用
收藏
页码:308 / 314
页数:7
相关论文
共 69 条
[1]   DIENCEPHALIC MECHANISMS OF PAIN SENSATION [J].
ALBEFESSARD, D ;
BERKLEY, KJ ;
KRUGER, L ;
RALSTON, HJ ;
WILLIS, WD .
BRAIN RESEARCH REVIEWS, 1985, 9 (03) :217-296
[2]   Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain [J].
Apkarian, AV ;
Thomas, PS ;
Krauss, BR ;
Szeverenyi, NM .
NEUROSCIENCE LETTERS, 2001, 311 (03) :193-197
[3]   Imaging how attention modulates pain in humans using functional MRI [J].
Bantick, SJ ;
Wise, RG ;
Ploghaus, A ;
Clare, S ;
Smith, SM ;
Tracey, I .
BRAIN, 2002, 125 :310-319
[4]   Brain processing of capsaicin-induced secondary hyperalgesia - A functional MRI study [J].
Baron, R ;
Baron, Y ;
Disbrow, E ;
Roberts, TPL .
NEUROLOGY, 1999, 53 (03) :548-557
[5]  
Becerra LR, 1999, MAGN RESON MED, V41, P1044, DOI 10.1002/(SICI)1522-2594(199905)41:5<1044::AID-MRM25>3.0.CO
[6]  
2-M
[7]   Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex:: a single-trial fMRI study [J].
Bornhövd, K ;
Quante, M ;
Glauche, V ;
Bromm, B ;
Weiller, C ;
Büchel, C .
BRAIN, 2002, 125 :1326-1336
[8]   fMRI of thermal pain: Effects of stimulus laterality and attention [J].
Brooks, JCW ;
Nurmikko, TJ ;
Bimson, WE ;
Singh, KD ;
Roberts, N .
NEUROIMAGE, 2002, 15 (02) :293-301
[9]   Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex:: A parametric single-trial laser functional magnetic resonance imaging study [J].
Büchel, C ;
Bornhövd, K ;
Quante, M ;
Glauche, V ;
Bromm, B ;
Weiller, C .
JOURNAL OF NEUROSCIENCE, 2002, 22 (03) :970-976
[10]   Frontally mediated control processes contribute to source memory retrieval [J].
Buckner, RL .
NEURON, 2002, 35 (05) :817-818