The function of microglia through purinergic receptors: Neuropathic pain and cytokine release

被引:271
作者
Inoue, K [1 ]
机构
[1] Kyushu Univ, Grad Sch Pharmaceut Sci, Dept Mol & Syst Pharmacol, Higashi Ku, Fukuoka 8128582, Japan
关键词
ATP; P2X4; microglia; neuropathic pain; allodynia; spinal cord; p38;
D O I
10.1016/j.pharmthera.2005.07.001
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Microglia play an important role as immune cells in the central nervous system (CNS). Microglia are activated in threatened physiological homeostasis, including CNS trauma, apoptosis, ischemia, inflammation, and infection. Activated microglia show a stereotypic, progressive series of changes in morphology, gene expression, function, and number and produce and release various chemical mediators, including proinflammatory cytokines that can produce immunological actions and can also act on neurons to alter their function. Recently, a great deal of attention is focusing on the relation between activated microglia through adenosine 5'-triphosphate (ATP) receptors and neuropathic pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes, or infection. This type of pain can be so severe that even light touching can be intensely painful and it is generally resistant to currently available treatments. There is abundant evidence that extracellular ATP and microglia have an important role in neuropathic pain. The expression of P2X4 receptor, a subtype of ATP receptors, is enhanced in spinal microglia after peripheral nerve injury model, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain. Several cytokines such as interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) in the dorsal horn are increased after nerve lesion and have been implicated in contributing to nerve-injury pain, presumably by altering synaptic transmission in the CNS, including the spinal cord. Nerve injury also leads to persistent activation of p38 mitogen-activated protein kinase (MAPK) in microglia. An inhibitor of this enzyme reverses mechanical allodynia following spinal nerve ligation (SNL). ATP is able to activate MAPK, leading to the release of bioactive substances, including cytokines, from microglia. Thus, diffusible factors released from activated microglia by the stimulation of purinergic receptors may have an important role in the development of neuropathic pain. Understanding the key roles of ATP receptors, including P2X4 receptors, in the microglia may lead to new strategies for the management of neuropathic pain. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:210 / 226
页数:17
相关论文
共 163 条
[1]   PURINOCEPTORS - ARE THERE FAMILIES OF P2X AND P2Y PURINOCEPTORS [J].
ABBRACCHIO, MP ;
BURNSTOCK, G .
PHARMACOLOGY & THERAPEUTICS, 1994, 64 (03) :445-475
[2]   Central neuron-glial and glial-glial interactions following axon injury [J].
Aldskogius, H ;
Kozlova, EN .
PROGRESS IN NEUROBIOLOGY, 1998, 55 (01) :1-26
[3]   TNFα promotes proliferation of oligodendrocyte progenitors and remyelination [J].
Arnett, HA ;
Mason, J ;
Marino, M ;
Suzuki, K ;
Matsushima, GK ;
Ting, JPY .
NATURE NEUROSCIENCE, 2001, 4 (11) :1116-1122
[4]   [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen's encephalitis [J].
Banati, RB ;
Goerres, GW ;
Myers, R ;
Gunn, RN ;
Turkheimer, FE ;
Kreutzberg, GW ;
Brooks, DJ ;
Jones, T ;
Duncan, JS .
NEUROLOGY, 1999, 53 (09) :2199-2203
[5]   Visualising microglial activation in vivo [J].
Banati, RB .
GLIA, 2002, 40 (02) :206-217
[6]   Long-term trans-synaptic glial responses in the human thalamus after peripheral nerve injury [J].
Banati, RB ;
Cagnin, A ;
Brooks, DJ ;
Gunn, RN ;
Myers, R ;
Jones, T ;
Birch, R ;
Anand, P .
NEUROREPORT, 2001, 12 (16) :3439-3442
[7]   PK ('peripheral benzodiazepine') - Binding sites in the CNS indicate early and discrete brain lesions: Microautoradiographic detection of [H-3]PK11195 binding to activated microglia [J].
Banati, RB ;
Myers, R ;
Kreutzberg, GW .
JOURNAL OF NEUROCYTOLOGY, 1997, 26 (02) :77-82
[8]   The peripheral benzodiazepine binding site in the brain in multiple sclerosis -: Quantitative in vivo imaging of microglia as a measure of disease activity [J].
Banati, RB ;
Newcombe, J ;
Gunn, RN ;
Cagnin, A ;
Turkheimer, F ;
Heppner, F ;
Price, G ;
Wegner, F ;
Giovannoni, G ;
Miller, DH ;
Perkin, GD ;
Smith, T ;
Hewson, AK ;
Bydder, G ;
Kreutzberg, GW ;
Jones, T ;
Cuzner, ML ;
Myers, R .
BRAIN, 2000, 123 :2321-2337
[9]   Tumor necrosis factor-alpha - A mediator of focal ischemic brain injury [J].
Barone, FC ;
Arvin, B ;
White, RF ;
Miller, A ;
Webb, CL ;
Willette, RN ;
Lysko, PG ;
Feuerstein, GZ .
STROKE, 1997, 28 (06) :1233-1244
[10]   IMAGING OF HUMAN-BRAIN LESIONS WITH AN OMEGA-3 SITE RADIOLIGAND [J].
BENAVIDES, J ;
CORNU, P ;
DENNIS, T ;
DUBOIS, A ;
HAUW, JJ ;
MACKENZIE, ET ;
SAZDOVITCH, V ;
SCATTON, B .
ANNALS OF NEUROLOGY, 1988, 24 (06) :708-712