Phospholipase C-γ modulates epithelial tight junction permeability through hyperphosphorylation of tight junction proteins

被引:33
作者
Ward, PD
Klein, RR
Troutman, MD
Desai, S
Thakker, DR
机构
[1] Univ N Carolina, Sch Pharm, Div Drug Delivery & Disposit, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Sch Med, Dept Pharmacol, Chapel Hill, NC 27599 USA
[3] GlaxoSmithKline, Res Triangle Pk, NC 27709 USA
[4] Qual Chem Labs, Wilmington, NC 28405 USA
关键词
D O I
10.1074/jbc.M203134200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phospholipase C-gamma (PLC-gamma) is stimulated by epidermal growth factor via activation of the epidermal growth factor receptors. The PLC inhibitor, 3-nitrocoumarin (3-NC), selectively inhibited PLC-gamma in Madin-Darby canine kidney cells without affecting the activity of PLC-beta. In contrast, inhibitors of PLC-beta, hexadecylphosphocholine and U73122, had no effect on the activity of PLC-gamma. Inhibition of PLC-gamma by 3-NC was associated with an increase in tight junction permeability across Madin-Darby canine kidney cell monolayers, as evidenced by 3-NC-induced decrease in transepithelial electrical resistance and increase in mannitol flux over a concentration range that was inhibitory to PLC-gamma. An analog of 3-NC, 7-hydroxy-3-NC (7-OH-3-NC), which was inactive as an inhibitor of PLC-gamma, also had no effect on tight junction permeability. Treatment with 3-NC caused punctate disruption in the cortical actin filaments. The PLC-gamma inhibitor, 3-NC, but not the inactive analog, 7-OH-3-NC, caused hyperphosphorylation of the tight junction proteins, occludin, ZO-1, and ZO-2. The serine/threonine kinase inhibitor, staurosporine (50-200 nM), significantly attenuated 3-NC-induced hyperphosphorylation of ZO-2. This corresponded with attenuation by staurosporine of 3-NC-induced increase in tight junction permeability, suggesting a relationship between ZO-2 phosphorylation and tight junction permeability.
引用
收藏
页码:35760 / 35765
页数:6
相关论文
共 37 条
[1]  
AKIYAMA T, 1987, J BIOL CHEM, V262, P5592
[2]   TIGHT JUNCTIONS AND THE MOLECULAR-BASIS FOR REGULATION OF PARACELLULAR PERMEABILITY [J].
ANDERSON, JM ;
VANITALLIE, CM .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 1995, 269 (04) :G467-G475
[3]   CHARACTERIZATION OF ZO-1, A PROTEIN-COMPONENT OF THE TIGHT JUNCTION FROM MOUSE-LIVER AND MADIN-DARBY CANINE KIDNEY-CELLS [J].
ANDERSON, JM ;
STEVENSON, BR ;
JESAITIS, LA ;
GOODENOUGH, DA ;
MOOSEKER, MS .
JOURNAL OF CELL BIOLOGY, 1988, 106 (04) :1141-1149
[4]   REGULATION OF TIGHT-JUNCTION PERMEABILITY DURING NUTRIENT ABSORPTION ACROSS THE INTESTINAL EPITHELIUM [J].
BALLARD, ST ;
HUNTER, JH ;
TAYLOR, AE .
ANNUAL REVIEW OF NUTRITION, 1995, 15 :35-55
[5]   CHANGES IN THE LEVELS OF INOSITOL PHOSPHATES AFTER AGONIST-DEPENDENT HYDROLYSIS OF MEMBRANE PHOSPHOINOSITIDES [J].
BERRIDGE, MJ ;
DAWSON, RMC ;
DOWNES, CP ;
HESLOP, JP ;
IRVINE, RF .
BIOCHEMICAL JOURNAL, 1983, 212 (02) :473-482
[6]   THE MADIN DARBY CANINE KIDNEY (MDCK) EPITHELIAL-CELL MONOLAYER AS A MODEL CELLULAR-TRANSPORT BARRIER [J].
CHO, MJ ;
THOMPSON, DP ;
CRAMER, CT ;
VIDMAR, TJ ;
SCIESZKA, JF .
PHARMACEUTICAL RESEARCH, 1989, 6 (01) :71-77
[7]  
Clarke HM, 1999, MOL BIOL CELL, V10, p410A
[8]   Increased tyrosine phosphorylation causes redistribution of adherens junction and tight junction proteins and perturbs paracellular barrier function in MDCK epithelia [J].
Collares-Buzato, CB ;
Jepson, MA ;
Simmons, NL ;
Hirst, BH .
EUROPEAN JOURNAL OF CELL BIOLOGY, 1998, 76 (02) :85-92
[9]   Molecular structure and assembly of the tight junction [J].
Denker, BM ;
Nigam, SK .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1998, 274 (01) :F1-F9
[10]  
Fanning AS, 1999, J AM SOC NEPHROL, V10, P1337