The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants

被引:151
作者
Seo, Shigemi [1 ]
Katou, Shinpei
Seto, Hideharu
Gomi, Kenji
Ohashi, Yuko
机构
[1] Natl Inst Agrobiol Sci, Plant Microbe Interact Res Unit, Tsukuba, Ibaraki 3058602, Japan
[2] Program Promot Basic Res Activ Innovat Biosci, Minato Ku, Tokyo 1050001, Japan
[3] RIKEN, Wako, Saitama 3510198, Japan
关键词
mitogen-activated protein kinase; wound signal transduction; jasmonic acid; salicylic acid;
D O I
10.1111/j.1365-313X.2006.03003.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In tobacco (Nicotiana tabacum), wounding causes rapid activation of two mitogen-activated protein kinases (MAPKs), wound-induced protein kinase (WIPK) and salicylic acid (SA)-induced protein kinase (SIPK), and the subsequent accumulation of jasmonic acid (JA). Our previous studies suggested that activation of WIPK is required for the production of wound-induced JA. However, the exact role of WIPK remains unresolved. We generated transgenic tobacco plants in which either WIPK or SIPK were silenced using RNA interference to define the roles of WIPK and SIPK in the wound response. In addition, transgenic tobacco plants were generated in which both WIPK and SIPK were silenced to examine the possibility that they have redundant roles. Wound-induced JA production was reduced compared with non-silenced plants in all of the WIPK-, SIPK- and WIPK/SIPK-silenced plants. Transgenic plants over-expressing NtMKP1, a gene encoding tobacco MAPK phosphatase, which inactivates WIPK and SIPK, also exhibited reduced JA production in response to wounding. In both WIPK/SIPK-silenced and NtMKP1-over-expressing plants, wounding resulted in an abnormal accumulation of both SA and transcripts for SA-responsive genes. These results suggest that WIPK and SIPK play an important role in JA production in response to wounding, and that they function cooperatively to control SA biosynthesis.
引用
收藏
页码:899 / 909
页数:11
相关论文
共 63 条
[1]   Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris [J].
Baldwin, IT ;
Zhang, ZP ;
Diab, N ;
Ohnmeiss, TE ;
McCloud, ES ;
Lynds, GY ;
Schmelz, EA .
PLANTA, 1997, 201 (04) :397-404
[2]  
Bogre L, 1997, PLANT CELL, V9, P75, DOI 10.1105/tpc.9.1.75
[3]   PERSPECTIVES ON WOUND-HEALING IN RESISTANCE TO PATHOGENS [J].
BOSTOCK, RM ;
STERMER, BA .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1989, 27 :343-371
[4]  
BOWLES DJ, 1990, ANNU REV BIOCHEM, V59, P873, DOI 10.1146/annurev.bi.59.070190.004301
[5]   DIFFERENTIAL INDUCTION OF ACQUIRED-RESISTANCE AND PR GENE-EXPRESSION IN TOBACCO BY VIRUS-INFECTION, ETHEPHON TREATMENT, UV-LIGHT AND WOUNDING [J].
BREDERODE, FT ;
LINTHORST, HJM ;
BOL, JF .
PLANT MOLECULAR BIOLOGY, 1991, 17 (06) :1117-1125
[6]   Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding [J].
Conconi, A ;
Miquel, M ;
Browse, JA ;
Ryan, CA .
PLANT PHYSIOLOGY, 1996, 111 (03) :797-803
[7]   Biosynthesis and action of jasmonates in plants [J].
Creelman, RA ;
Mullet, JE .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1997, 48 :355-381
[8]   JASMONIC ACID METHYL JASMONATE ACCUMULATE IN WOUNDED SOYBEAN HYPOCOTYLS AND MODULATE WOUND GENE-EXPRESSION [J].
CREELMAN, RA ;
TIERNEY, ML ;
MULLET, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (11) :4938-4941
[9]   Signals regulating multiple responses to wounding and herbivores [J].
de Bruxelles, GL ;
Roberts, MR .
CRITICAL REVIEWS IN PLANT SCIENCES, 2001, 20 (05) :487-521
[10]   Fatty acid signaling in Arabidopsis [J].
Farmer, EE ;
Weber, H ;
Vollenweider, S .
PLANTA, 1998, 206 (02) :167-174