Stability maps of injection-locked laser diodes using the largest Lyapunov exponent

被引:59
作者
Chlouverakis, KE [1 ]
Adams, MJ [1 ]
机构
[1] Univ Essex, Dept Elect Syst Engn, Colchester CO4 3SQ, Essex, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/S0030-4018(02)02357-X
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we discuss the dynamics of a semiconductor laser subject to optical injection using the method of the Largest Lyapunov Exponent (LLE). The system's stability is investigated as a function of the frequency detuning omega, the injection strength K and the linewidth enhancement factor a. Chaotic regimes and locking stability areas are found by integrating the rate equations,and calculating the LLE for each solution in the (K-omega) plane. Periodic solutions are tracked inside the chaotic islands and very good agreement is demonstrated with experimental data in the literature. The LLE's strength lies in the ability to map the amount of chaos and the amount of stability inside the stable locking regions. We also demonstrate that as we increase the linewidth enhancement factor, the system becomes more chaotic on average and the LLE is greater for each map. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:405 / 412
页数:8
相关论文
共 13 条
[1]   AN IMPROVED METHOD FOR ESTIMATING LIAPUNOV EXPONENTS OF CHAOTIC TIME-SERIES [J].
BRIGGS, K .
PHYSICS LETTERS A, 1990, 151 (1-2) :27-32
[2]   Open-loop chaotic synchronization of injection-locked semiconductor lasers with gigahertz range modulation [J].
Chen, HF ;
Liu, JM .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2000, 36 (01) :27-34
[3]  
DeJagher PC, 1996, QUANTUM SEMICL OPT, V8, P805, DOI 10.1088/1355-5111/8/4/004
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[5]   Coexisting periodic attractors in injection-locked diode lasers [J].
Gavrielides, A ;
Kovanis, V ;
Varangis, PM ;
Erneux, T ;
Lythe, G .
QUANTUM AND SEMICLASSICAL OPTICS, 1997, 9 (05) :785-796
[6]   Dynamical characteristics of an optically injected semiconductor laser [J].
Hwang, SK ;
Liu, JM .
OPTICS COMMUNICATIONS, 2000, 183 (1-4) :195-205
[7]   Tori and their bifurcations in an optically injected semiconductor laser [J].
Krauskopf, B ;
Tollenaar, N ;
Lenstra, D .
OPTICS COMMUNICATIONS, 1998, 156 (1-3) :158-169
[8]   Synchronization of chaotic semiconductor lasers: Application to encoded communications [J].
Mirasso, CR ;
Colet, P ;
GarciaFernandez, P .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8 (02) :299-301
[9]   INTENSITY INSTABILITIES OF SEMICONDUCTOR-LASERS UNDER CURRENT MODULATION, EXTERNAL LIGHT INJECTION, AND DELAYED FEEDBACK [J].
SACHER, J ;
BAUMS, D ;
PANKNIN, P ;
ELSASSER, W ;
GOBEL, EO .
PHYSICAL REVIEW A, 1992, 45 (03) :1893-1905
[10]   Nonlinear dynamics induced by external optical injection in semiconductor lasers [J].
Simpson, TB ;
Liu, JM ;
Huang, KF ;
Tai, K .
QUANTUM AND SEMICLASSICAL OPTICS, 1997, 9 (05) :765-784