Characterization of T7 RNA polymerase transcription complexes assembled on nucleic acid scaffolds

被引:38
作者
Temiakov, D [1 ]
Anikin, M [1 ]
McAllister, WT [1 ]
机构
[1] SUNY Hlth Sci Ctr, Dept Microbiol & Immunol, Morse Inst Mol Genet, Brooklyn, NY 11203 USA
关键词
D O I
10.1074/jbc.M208923200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have used synthetic oligomers of DNA and RNA to assemble nucleic acid scaffolds that, when mixed with T7 RNA polymerase, allow the formation of functional transcription complexes. Manipulation of the scaffold structure allows the contribution of each element in the scaffold to transcription activity to be independently determined. The minimal scaffold that allows efficient extension after challenge with 200 mM NaCl consists of an 8-nt RNA primer hybridized to a DNA template (T strand) that extends 5-10 nt downstream. Constructs in which the RNA-DNA hybrid is less than or greater than 8 bp are less salt-resistant, and the hybrid cannot be extended beyond 12-13 bp. Although the presence of a complementary nontemplate strand downstream of the primer does not affect salt resistance, the presence of DNA upstream decreases resistance. The addition of a 4-nt unpaired "tail" to the 5' end of the primer increases salt resistance, as does the presence of an impaired nontemplate strand in the region that contains the 8-bp hybrid (thereby generating an artificial transcription "bubble"). Scaffold complexes having these features remain active for over 1 week in the absence of salt and exhibit many of the properties of halted elongation complexes, including resistance to salt challenge, a similar trypsin cleavage pattern, and a similar pattern of RNA-RNA polymerase cross-linking.
引用
收藏
页码:47035 / 47043
页数:9
相关论文
共 40 条
[1]   SPECIFIC BINDING OF MONOMERIC BACTERIOPHAGE-T3 AND BACTERIOPHAGE-T7 RNA-POLYMERASES TO THEIR RESPECTIVE COGNATE PROMOTERS REQUIRES THE INITIATING RIBONUCLEOSIDE TRIPHOSPHATE (GTP) [J].
BASU, S ;
MAITRA, U .
JOURNAL OF MOLECULAR BIOLOGY, 1986, 190 (03) :425-437
[2]   T7 promoter release mediated by DNA scrunching [J].
Brieba, LG ;
Sousa, R .
EMBO JOURNAL, 2001, 20 (23) :6826-6835
[3]   Structure of a transcribing T7 RNA polymerase initiation complex [J].
Cheetham, GMT ;
Steitz, TA .
SCIENCE, 1999, 286 (5448) :2305-2309
[4]   Structural basis for initiation of transcription from an RNA polymerase-promoter complex [J].
Cheetham, GMT ;
Jeruzalmi, D ;
Steitz, TA .
NATURE, 1999, 399 (6731) :80-83
[5]   RNA DISPLACEMENT PATHWAYS DURING TRANSCRIPTION FROM SYNTHETIC RNA DNA BUBBLE DUPLEXES [J].
DAUBE, SS ;
VONHIPPEL, PH .
BIOCHEMISTRY, 1994, 33 (01) :340-347
[6]   FUNCTIONAL TRANSCRIPTION ELONGATION COMPLEXES FROM SYNTHETIC RNA-DNA BUBBLE DUPLEXES [J].
DAUBE, SS ;
VONHIPPEL, PH .
SCIENCE, 1992, 258 (5086) :1320-1324
[7]   The stability of abortively cycling T7 RNA polymerase complexes depends upon template conformation [J].
Diaz, GA ;
Rong, MQ ;
McAllister, WT ;
Durbin, RK .
BIOCHEMISTRY, 1996, 35 (33) :10837-10843
[8]   A model for the mechanism of polymerase translocation [J].
Guajardo, R ;
Sousa, R .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 265 (01) :8-19
[9]   T7 RNA polymerase elongation complex structure and movement [J].
Huang, JB ;
Sousa, R .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 303 (03) :347-358
[10]   INTERACTIONS OF THE RNA-POLYMERASE OF BACTERIOPHAGE-T7 WITH ITS PROMOTER DURING BINDING AND INITIATION OF TRANSCRIPTION [J].
IKEDA, RA ;
RICHARDSON, CC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (11) :3614-3618