Genes and transposons are differentially methylated in plants, but not in mammals

被引:106
作者
Rabinowicz, PD [1 ]
Palmer, LE [1 ]
May, BP [1 ]
Hemann, MT [1 ]
Lowe, SW [1 ]
McCombie, WR [1 ]
Martienssen, RA [1 ]
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
关键词
D O I
10.1101/gr.1784803
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA methylation is found in many eukaryotes, but its function is still controversial. We have studied the methylation of plant and animal genomes using a PCR-based technique amenable for high throughput. Repetitive elements are methylated in both organisms, but whereas most mammalian exons are methylated, plant exons are not. Thus, targeting of methylation specifically to transposons appears to be restricted to plants. We propose that the mechanistic basis of this difference may involve RNA interference. Sequencing strategies that depend on differential methylation are predicted to have different outcomes in plant and mammalian genomes.
引用
收藏
页码:2658 / 2664
页数:7
相关论文
共 55 条
  • [1] THE C-MYC ONCOGENE DRIVEN BY IMMUNOGLOBULIN ENHANCERS INDUCES LYMPHOID MALIGNANCY IN TRANSGENIC MICE
    ADAMS, JM
    HARRIS, AW
    PINKERT, CA
    CORCORAN, LM
    ALEXANDER, WS
    CORY, S
    PALMITER, RD
    BRINSTER, RL
    [J]. NATURE, 1985, 318 (6046) : 533 - 538
  • [2] Tumour class prediction and discovery by microarray-based DNA methylation analysis -: art. no. e21
    Adorján, P
    Distler, J
    Lipscher, E
    Model, F
    Müller, J
    Pelet, C
    Braun, A
    Florl, AR
    Gütig, D
    Grabs, G
    Howe, A
    Kursar, M
    Lesche, R
    Leu, E
    Lewin, A
    Maier, S
    Müller, V
    Otto, T
    Scholz, C
    Schulz, WA
    Seifert, HH
    Schwope, I
    Ziebarth, H
    Berlin, K
    Piepenbrock, C
    Olek, A
    [J]. NUCLEIC ACIDS RESEARCH, 2002, 30 (05) : e21
  • [3] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [4] ACTIVE MAIZE GENES ARE UNMODIFIED AND FLANKED BY DIVERSE CLASSES OF MODIFIED, HIGHLY REPETITIVE DNA
    BENNETZEN, JL
    SCHRICK, K
    SPRINGER, PS
    BROWN, WE
    SANMIGUEL, P
    [J]. GENOME, 1994, 37 (04) : 565 - 576
  • [5] ACTIVATION OF MAMMALIAN DNA METHYLTRANSFERASE BY CLEAVAGE OF A ZN BINDING REGULATORY DOMAIN
    BESTOR, TH
    [J]. EMBO JOURNAL, 1992, 11 (07) : 2611 - 2617
  • [6] Molecular biology - DNA methylation de novo
    Bird, A
    [J]. SCIENCE, 1999, 286 (5448) : 2287 - 2288
  • [7] DNA methylation patterns and epigenetic memory
    Bird, A
    [J]. GENES & DEVELOPMENT, 2002, 16 (01) : 6 - 21
  • [8] GENE NUMBER, NOISE-REDUCTION AND BIOLOGICAL COMPLEXITY
    BIRD, AP
    [J]. TRENDS IN GENETICS, 1995, 11 (03) : 94 - 100
  • [9] Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes
    Cao, XF
    Jacobsen, SE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 : 16491 - 16498
  • [10] Conserved plant genes with similarity to mammalian de novo DNA methyltransferases
    Cao, XF
    Springer, NM
    Muszynski, MG
    Phillips, RL
    Kaeppler, S
    Jacobsen, SE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) : 4979 - 4984