Secondary structure of sea anemone cytolysins in soluble and membrane bound form by infrared spectroscopy

被引:62
作者
Menestrina, G
Cabiaux, V
Tejuca, M
机构
[1] CNR, ITC, Ctr Fis Stati Aggregati, I-38050 Trento, Italy
[2] Free Univ Brussels, Lab Macromol Interfaces, B-1050 Brussels, Belgium
[3] Univ La Habana, Fac Biol, Dept Bioquim, Havana, Cuba
关键词
D O I
10.1006/bbrc.1998.9898
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Attenuated total reflection (ATR) Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structure of two pore-forming cytolysins from the sea anemone Stichodactyla helianthus and their interaction with lipid membranes. Frequency component analysis of the amide I' band indicated that these peptides are composed predominantly of beta structure, comprising 44-50% beta-sheet, 18-20% beta-turn, 12-15% alpha-helix, and 19-22% random coil. Upon interaction with lipid membranes a slight increase in the alpha-helical and beta-sheet structures was observed with a concomitant decrease of the unordered structure. Polarisation experiments indicated that both toxins had some disordering effect on the lipid layers. The dichroic ratio of the cu-helical component of the membrane-bound toxin was 3.0-3.3, indicating that this element was oriented with an angle of 38 degrees-42 degrees with respect to the normal to the plane of the crystal surface, thus resulting almost parallel to the mean direction of the lipid chains, (C) 1999 Academic Press.
引用
收藏
页码:174 / 180
页数:7
相关论文
共 40 条
[1]   N-terminal truncation mutagenesis of equinatoxin II, a pore-forming protein from the sea anemone Actinia equina [J].
Anderluh, G ;
Pungercar, J ;
Krizaj, I ;
Strukelj, B ;
Gubensek, F ;
Macek, P .
PROTEIN ENGINEERING, 1997, 10 (07) :751-755
[2]   STRUCTURAL MODEL OF THE PHOSPHOLAMBAN ION-CHANNEL COMPLEX IN PHOSPHOLIPID-MEMBRANES [J].
ARKIN, IT ;
ROTHMAN, M ;
LUDLAM, CFC ;
AIMOTO, S ;
ENGELMAN, DM ;
ROTHSCHILD, KJ ;
SMITH, SO .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 248 (04) :824-834
[3]   QUANTITATIVE STUDIES OF THE STRUCTURE OF PROTEINS IN SOLUTION BY FOURIER-TRANSFORM INFRARED-SPECTROSCOPY [J].
ARRONDO, JLR ;
MUGA, A ;
CASTRESANA, J ;
GONI, FM .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1993, 59 (01) :23-56
[4]   The infrared dichroism of transmembrane helical polypeptides [J].
Axelsen, PH ;
Kaufman, BK ;
McElhaney, RN ;
Lewis, RNAH .
BIOPHYSICAL JOURNAL, 1995, 69 (06) :2770-2781
[5]   Voltage gating is a fundamental feature of porin and toxin β-barrel membrane channels [J].
Bainbridge, G ;
Gokce, I ;
Lakey, JH .
FEBS LETTERS, 1998, 431 (03) :305-308
[6]   PRIMARY AND SECONDARY STRUCTURE OF A PORE-FORMING TOXIN FROM THE SEA-ANEMONE, ACTINIA-EQUINA L, AND ITS ASSOCIATION WITH LIPID VESICLES [J].
BELMONTE, G ;
MENESTRINA, G ;
PEDERZOLLI, C ;
KRIZAJ, I ;
GUBENSEK, F ;
TURK, T ;
MACEK, P .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1994, 1192 (02) :197-204
[7]   PORE FORMATION BY THE SEA-ANEMONE CYTOLYSIN EQUINATOXIN-II IN RED-BLOOD-CELLS AND MODEL LIPID-MEMBRANES [J].
BELMONTE, G ;
PEDERZOLLI, C ;
MACEK, P ;
MENESTRINA, G .
JOURNAL OF MEMBRANE BIOLOGY, 1993, 131 (01) :11-22
[8]   INTERACTIONS BETWEEN MEMBRANES AND CYTOLYTIC PEPTIDES [J].
BERNHEIMER, AW ;
RUDY, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 864 (01) :123-141
[9]  
BERNHEIMER AW, 1990, ACS SYM SER, V418, P304
[10]  
BLUMENTHAL KM, 1983, J BIOL CHEM, V258, P5574