Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites

被引:91
作者
Doeff, Marca M. [1 ]
Wilcox, James D. [1 ]
Yu, Rong [1 ]
Aumentado, Albert [1 ]
Marcinek, Marek [2 ]
Kostecki, Robert [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
关键词
LiFePO4; carbon; lithium ion batteries; graphitization catalysts;
D O I
10.1007/s10008-007-0419-9
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical performance of LiFePO4/C composites in lithium cells is closely correlated to pressed pellet conductivities measured by AC impedance methods. These composite conductivities are a strong function not only of the amount of carbon but of its structure and distribution. Ideally, the amount of carbon in composites should be minimal (less than about 2 wt%) so as not to decrease the energy density unduly. This is particularly important for plug-in hybrid electric vehicle applications (PHEVs) where both high power and moderate energy density are required. Optimization of the carbon structure, particularly the sp(2)/sp(3) and disordered/graphene (D/G) ratios, improves the electronic conductivity while minimizing the carbon amount. Manipulation of the carbon structure can be achieved via the use of synthetic additives including iron-containing graphitization catalysts. Additionally, combustion synthesis techniques allow co-synthesis of LiFePO4 and carbon fibers or nanotubes, which can act as "nanowires" for the conduction of current during cell operation.
引用
收藏
页码:995 / 1001
页数:7
相关论文
共 29 条
  • [1] Continuous production of aligned carbon nanotubes: a step closer to commercial realization
    Andrews, R
    Jacques, D
    Rao, AM
    Derbyshire, F
    Qian, D
    Fan, X
    Dickey, EC
    Chen, J
    [J]. CHEMICAL PHYSICS LETTERS, 1999, 303 (5-6) : 467 - 474
  • [2] Carbon nanotube composites for thermal management
    Biercuk, MJ
    Llaguno, MC
    Radosavljevic, M
    Hyun, JK
    Johnson, AT
    Fischer, JE
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (15) : 2767 - 2769
  • [3] Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density
    Chen, ZH
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) : A1184 - A1189
  • [4] GLYCINE NITRATE COMBUSTION SYNTHESIS OF OXIDE CERAMIC POWDERS
    CHICK, LA
    PEDERSON, LR
    MAUPIN, GD
    BATES, JL
    THOMAS, LE
    EXARHOS, GJ
    [J]. MATERIALS LETTERS, 1990, 10 (1-2) : 6 - 12
  • [5] Electronically conductive phospho-olivines as lithium storage electrodes
    Chung, SY
    Bloking, JT
    Chiang, YM
    [J]. NATURE MATERIALS, 2002, 1 (02) : 123 - 128
  • [6] Size effects on carbon-free LiFePO4 powders
    Delacourt, C.
    Poizot, P.
    Levasseur, S.
    Masquelier, C.
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) : A352 - A355
  • [7] Synthesis of single-walled carbon nanotubes in flames
    Diener, MD
    Nichelson, N
    Alford, JM
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (41) : 9615 - 9620
  • [8] Effect of surface carbon structure on the electrochemical performance of LiFePO4
    Doeff, MM
    Hu, YQ
    McLarnon, F
    Kostecki, R
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) : A207 - A209
  • [9] VIBRATIONAL-MODES OF CARBON NANOTUBES - SPECTROSCOPY AND THEORY
    EKLUND, PC
    HOLDEN, JM
    JISHI, RA
    [J]. CARBON, 1995, 33 (07) : 959 - 972
  • [10] Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism
    Emmenegger, C
    Bonard, JM
    Mauron, P
    Sudan, P
    Lepora, A
    Grobety, B
    Züttel, A
    Schlapbach, L
    [J]. CARBON, 2003, 41 (03) : 539 - 547