Energetics of side chain packing in staphylococcal nuclease assessed by exchange of valines, isoleucines, and leucines

被引:34
作者
Holder, JB [1 ]
Bennett, AF [1 ]
Chen, JM [1 ]
Spencer, DS [1 ]
Byrne, MP [1 ]
Stites, WE [1 ]
机构
[1] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA
关键词
D O I
10.1021/bi011267t
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To examine the importance of side chain packing to protein stability, each of the I I leucines in staphylococcal nuclease was substituted with isoleucine and valine. The nine valines were substituted with leucine and isoleucine, while the five isoleucines, previously substituted with valine, were substituted with leucine and methionine. These substitutions conserve the hydrophobic character of these side chains but alter side chain geometry and, in some cases, size. In addition, eight threonine residues, previously substituted with valine, were substituted with isoleucine to test the importance of packing at sites normally not occupied by a hydrophobic residue. The stabilities of these 58 mutant proteins were measured by guanidine hydrochloride denaturation. To the best of our knowledge, this is the largest library of single packing mutants yet characterized. As expected, repacking stability effects are tied to the degree of side chain burial. The average energetic cost of moving a single buried methyl group was 0.9 kcal/mol, albeit with a standard deviation of 0.8 kcal/mol. This average is actually slightly greater than the value of 0.7-0.8 kcal/mol estimated for the hydrophobic transfer energy of a methylene from octanol to water. These results appear to indicate that van der Waals interactions gained from optimal packing are at least as important in stabilizing the native state of proteins as hydrophobic transfer effects.
引用
收藏
页码:13998 / 14003
页数:6
相关论文
共 52 条
[1]   HYDROPHOBIC CORE REPACKING AND AROMATIC AROMATIC INTERACTION IN THE THERMOSTABLE MUTANT OF T4 LYSOZYME SER 117-]PHE [J].
ANDERSON, DE ;
HURLEY, JH ;
NICHOLSON, H ;
BAASE, WA ;
MATTHEWS, BW .
PROTEIN SCIENCE, 1993, 2 (08) :1285-1290
[2]   RULES FOR ALPHA-HELIX TERMINATION BY GLYCINE [J].
AURORA, R ;
SRINIVASAN, R ;
ROSE, GD .
SCIENCE, 1994, 264 (5162) :1126-1130
[3]   Active barnase variants with completely random hydrophobic cores [J].
Axe, DD ;
Foster, NW ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (11) :5590-5594
[4]   THE ROLE OF BACKBONE FLEXIBILITY IN THE ACCOMMODATION OF VARIANTS THAT REPACK THE CORE OF T4-LYSOZYME [J].
BALDWIN, EP ;
HAJISEYEDJAVADI, O ;
BAASE, WA ;
MATTHEWS, BW .
SCIENCE, 1993, 262 (5140) :1715-1718
[5]   3D DOMAIN SWAPPING - A MECHANISM FOR OLIGOMER ASSEMBLY [J].
BENNETT, MJ ;
SCHLUNEGGER, MP ;
EISENBERG, D .
PROTEIN SCIENCE, 1995, 4 (12) :2455-2468
[6]   DECIPHERING THE MESSAGE IN PROTEIN SEQUENCES - TOLERANCE TO AMINO-ACID SUBSTITUTIONS [J].
BOWIE, JU ;
REIDHAAROLSON, JF ;
LIM, WA ;
SAUER, RT .
SCIENCE, 1990, 247 (4948) :1306-1310
[7]   ENERGETIC CONTRIBUTION OF SIDE-CHAIN HYDROGEN-BONDING TO THE STABILITY OF STAPHYLOCOCCAL NUCLEASE [J].
BYRNE, MP ;
MANUEL, RL ;
LOWE, LG ;
STITES, WE .
BIOCHEMISTRY, 1995, 34 (42) :13949-13960
[8]   Increasing the thermostability of staphylococcal nuclease: Implications for the origin of protein thermostability [J].
Chen, JM ;
Lu, ZQ ;
Sakon, J ;
Stites, WE .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 303 (02) :125-130
[9]  
CHOTHIA C, 1984, ANNU REV BIOCHEM, V53, P537
[10]  
CONNOLLY ML, 1986, INT J PEPT PROT RES, V28, P360