Ubiquitin and the control of protein fate in the secretory and endocytic pathways

被引:515
作者
Bonifacino, JS [1 ]
Weissman, AM
机构
[1] NICHHD, Cell Biol & Metab Branch, NIH, Bethesda, MD 20892 USA
[2] NCI, Lab Immune Cell Biol, Div Basic Sci, NIH, Bethesda, MD 20892 USA
关键词
proteasomes; ER degradation; quality control; endocytosis; lysosomes; adaptors;
D O I
10.1146/annurev.cellbio.14.1.19
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The modification of proteins by chains of ubiquitin has long been known to mediate targeting of cytosolic and nuclear proteins for degradation by proteasomes. In this article, we discuss recent developments that reveal the involvement of ubiquitin in the degradation of proteins retained within the endoplasmic reticulum (ER) and in the internalization of plasma membrane proteins. Both luminal and transmembrane proteins retained in the ER are now known to be retrotranslocated into the cytosol in a process that involves ER chaperones and components of the protein import machinery. Once exposed to the cytosolic milieu, retro-translocated proteins are degraded by the proteasome, in most cases following polyubiquitination. There is growing evidence that both the ubiquitin-conjugating machinery and proteasomes may be associated with the cytosolic face of the ER membrane and that they could be functionally coupled to the process of retrotranslocation, The ubiquitination of plasma membrane proteins, on the other hand, mediates internalization of the proteins, which in most cases is followed by lysosomal/vacuolar degradation. There is, however, a well-documented case of a plasma membrane protein (the c-Met receptor) for which ubiquitination results in proteasomal degradation. These recent findings imply that ubiquitin plays more diverse roles in the regulation of the fate of cellular proteins than originally anticipated.
引用
收藏
页码:19 / 57
页数:39
相关论文
共 163 条
[1]   STIMULATION-DEPENDENT I-KAPPA-B-ALPHA PHOSPHORYLATION MARKS THE NF-KAPPA-B INHIBITOR FOR DEGRADATION VIA THE UBIQUITIN-PROTEASOME PATHWAY [J].
ALKALAY, I ;
YARON, A ;
HATZUBAI, A ;
ORIAN, A ;
CIECHANOVER, A ;
BEN-NERIAH, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10599-10603
[2]  
Amara J F, 1992, Trends Cell Biol, V2, P145, DOI 10.1016/0962-8924(92)90101-R
[3]  
ASHWELL JD, 1995, CLIN IMMUNOLOGY PRIN, P69
[4]   The ear of alpha-adaptin interacts with the COOH-terminal domain of the Eps15 protein [J].
Benmerah, A ;
Begue, B ;
DautryVarsat, A ;
CerfBensussan, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (20) :12111-12116
[5]   The tyrosine kinase substrate eps15 is constitutively associated with the plasma membrane adaptor AP-2 [J].
Benmerah, A ;
Gagnon, J ;
Begue, B ;
Megarbane, B ;
DautryVarsat, A ;
CerfBensussan, N .
JOURNAL OF CELL BIOLOGY, 1995, 131 (06) :1831-1838
[6]   Co-translational degradation of apolipoprotein B100 by the proteasome is prevented by microsomal triglyceride transfer protein - Synchronized translation studies on HepG2 cells treated with an inhibitor of microsomal triglyceride transfer protein [J].
Benoist, F ;
GrandPerret, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20435-20442
[7]  
BERCOVICH Z, 1989, J BIOL CHEM, V264, P15949
[8]   Role of Cue1p in ubiquitination and degradation at the ER surface [J].
Biederer, T ;
Volkwein, C ;
Sommer, T .
SCIENCE, 1997, 278 (5344) :1806-1809
[9]   Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway [J].
Biederer, T ;
Volkwein, C ;
Sommer, T .
EMBO JOURNAL, 1996, 15 (09) :2069-2076
[10]   COMPLETE STRUCTURE AND EXPRESSION IN TRANSFECTED CELLS OF HIGH-AFFINITY IGE RECEPTOR [J].
BLANK, U ;
RA, C ;
MILLER, L ;
WHITE, K ;
METZGER, H ;
KINET, JP .
NATURE, 1989, 337 (6203) :187-189