Convergence of repeated quantum nondemolition measurements and wave-function collapse

被引:53
作者
Bauer, Michel [1 ,2 ]
Bernard, Denis [2 ]
机构
[1] CEA Saclay, Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France
[2] Ecole Normale Super, CNRS ENS, Phys Theor Lab, F-75005 Paris, France
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 04期
关键词
STOCHASTIC DIFFERENTIAL-EQUATIONS; MODELS; TIME;
D O I
10.1103/PhysRevA.84.044103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Motivated by recent experiments on quantum trapped fields, we give a rigorous proof that repeated indirect quantum nondemolition (QND) measurements converge to the collapse of the wave function as predicted by the postulates of quantum mechanics for direct measurements. We also relate the rate of convergence toward the collapsed wave function to the relative entropy of each indirect measurement, a result which makes contact with information theory.
引用
收藏
页数:4
相关论文
共 28 条
[1]   Martingale models for quantum state reduction [J].
Adler, SL ;
Brody, DC ;
Brun, TA ;
Hughston, LP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42) :8795-8820
[2]   MEASUREMENT THEORY AND STOCHASTIC DIFFERENTIAL-EQUATIONS IN QUANTUM-MECHANICS [J].
BARCHIELLI, A .
PHYSICAL REVIEW A, 1986, 34 (03) :1642-1649
[3]   MEASUREMENTS CONTINUOUS IN TIME AND A-POSTERIORI STATES IN QUANTUM-MECHANICS [J].
BARCHIELLI, A ;
BELAVKIN, VP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (07) :1495-1514
[4]  
BAUER M, UNPUB
[5]   QUANTUM CONTINUAL MEASUREMENTS AND A POSTERIORI COLLAPSE ON CCR [J].
BELAVKIN, VP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (03) :611-635
[6]  
Breuer H.P., 2006, The Theory of Open Quantum Systems
[7]   QUANTUM-MECHANICS OF MEASUREMENTS DISTRIBUTED IN TIME - A PATH-INTEGRAL FORMULATION [J].
CAVES, CM .
PHYSICAL REVIEW D, 1986, 33 (06) :1643-1665
[8]  
CHARMICHAEL HJ, 1993, OPEN SYSTEM APPROACH, V18, P84305
[9]   WAVE-FUNCTION APPROACH TO DISSIPATIVE PROCESSES IN QUANTUM OPTICS [J].
DALIBARD, J ;
CASTIN, Y ;
MOLMER, K .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :580-583
[10]  
DALIBARD J, ARXIV08054002, P84305