Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum

被引:135
作者
Rivas, S
Thomas, CM
机构
[1] INRA, CNRS, UMR 2594, Lab Interact Plantes Microorganismes, F-31326 Castanet Tolosan, France
[2] Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England
关键词
tomato/Cladosporium fulvum; gene-for-gene resistance; Cf genes; Cf-dependent defense responses;
D O I
10.1146/annurev.phyto.43.040204.140224
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The interaction between tomato and the leaf mold pathogen Cladosporium fulvum is controlled in a gene-for-gene manner. This interaction has provided useful insights to the molecular basis of recognition specificity in plant disease resistance (R) proteins, disease resistance (R) gene evolution, R-protein mediated signaling, and cellular responses to pathogen attack. Tomato Cf genes encode type I membrane-associated receptor-like proteins (RLPs) comprised predominantly of extracellular leucine-rich repeats (eLRRs) and which are anchored in the plasma membrane. Cf proteins recognize fungal avirulence (Avr) peptides secreted into the leaf apoplast during infection. A direct interaction of Cf proteins with their cognate Avr proteins has not been demonstrated and the molecular mechanism of Avr protein perception is not known. Following ligand perception Cf proteins trigger a hypersensitive response (HR) and the arrest of pathogen development. Cf proteins lack an obvious signaling domain, suggesting that defense response activation is mediated through interactions with other partners. Avr protein perception results in the rapid accumulation of active oxygen species (AOS), changes in cellular ion fluxes, activation of protein kinase cascades, changes in gene expression and, possibly, targeted protein degradation. Here we review our current understanding of Cf-mediated responses in resistance to C fulvum.
引用
收藏
页码:395 / 436
页数:42
相关论文
共 171 条
[1]   Regulatory role of SGT1 in early R gene-mediated plant defenses [J].
Austin, MJ ;
Muskett, P ;
Kahn, K ;
Feys, BJ ;
Jones, JDG ;
Parker, JE .
SCIENCE, 2002, 295 (5562) :2077-2080
[2]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[3]   The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance [J].
Azevedo, C ;
Sadanandom, A ;
Kitagawa, K ;
Freialdenhoven, A ;
Shirasu, K ;
Schulze-Lefert, P .
SCIENCE, 2002, 295 (5562) :2073-2076
[4]   The U-box protein family in plants [J].
Azevedo, C ;
Santos-Rosa, MJ ;
Shirasu, K .
TRENDS IN PLANT SCIENCE, 2001, 6 (08) :354-358
[5]   Receptor kinase signaling in plant development [J].
Becraft, PW .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2002, 18 :163-192
[6]   The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety [J].
Belfanti, E ;
Silfverberg-Dilworth, E ;
Tartarini, S ;
Patocchi, A ;
Barbieri, M ;
Zhu, J ;
Vinatzer, BA ;
Gianfranceschi, L ;
Gessler, C ;
Sansavini, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (03) :886-890
[7]   The C-terminal dilysine motif confers endoplasmic reticulum localization to type I membrane proteins in plants [J].
Benghezal, M ;
Wasteneys, GO ;
Jones, DA .
PLANT CELL, 2000, 12 (07) :1179-1201
[8]   K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction [J].
Blatt, MR ;
Grabov, A ;
Brearley, J ;
Hammond-Kosack, K ;
Jones, JDG .
PLANT JOURNAL, 1999, 19 (04) :453-462
[9]   Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family [J].
Cheng, SH ;
Willmann, MR ;
Chen, HC ;
Sheen, J .
PLANT PHYSIOLOGY, 2002, 129 (02) :469-485
[10]   The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction [J].
Craig, KL ;
Tyers, M .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1999, 72 (03) :299-328