Linear systems in Jordan algebras and primal-dual interior-point algorithms

被引:188
作者
Faybusovich, L [1 ]
机构
[1] UNIV NOTRE DAME,DEPT MATH,NOTRE DAME,IN 46556
基金
美国国家科学基金会;
关键词
interior-point methods; linear systems; Jordan algebras;
D O I
10.1016/S0377-0427(97)00153-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a possibility of the extension of a primal-dual interior-point algorithm suggested recently by Alizadeh et al. (1994). We consider optimization problems defined on the intersection of a symmetric cone and an affine subspace. The question of solvability of a linear system arising in the implementation of the primal-dual algorithm is analyzed. A nondegeneracy theory for the considered class of problems is developed. The Jordan algebra technique suggested by Faybusovich (1995) plays major role in the present paper.
引用
收藏
页码:149 / 175
页数:27
相关论文
共 10 条
[1]   Complementarity and nondegeneracy in semidefinite programming [J].
Alizadeh, F ;
Haeberly, JPA ;
Overton, ML .
MATHEMATICAL PROGRAMMING, 1997, 77 (02) :111-128
[2]  
ALIZADEH F, 1996, PRIMAL DUAL INTERIOR
[3]  
ALIZADEH F, 1994, PRIMAL DUAL INTERIOR
[4]  
Faraut J., 1994, Oxford Mathematical Monographs
[5]  
FREUDENTHAL H, 1951, OKTAVEN AUSNAHMEGRUP
[6]  
Jacobson N, 1968, Structure and Representation of Jordan Algebras
[7]  
SHIDA M, 1996, EXISTENCE SEARCH DIR
[8]  
UNTERBERGER A, 1996, PSEUDODIFFERENTIAL A
[9]  
Upmeier H., 1996, Operator theory advances and applications, V81
[10]  
[No title captured]