Computational promoter analysis of mouse, rat and human antimicrobial peptide-coding genes

被引:17
作者
Brahmachary, Manisha
Schonbach, Christian
Yang, Liang
Huang, Enli
Tan, Sin Lam
Chowdhary, Rajesh
Krishnan, S. P. T.
Lin, Chin-Yo
Hume, David A.
Kai, Chikatoshi
Kawai, Jun
Carninci, Piero
Hayashizaki, Yoshihide
Bajic, Vladimir B.
机构
[1] RIKEN, Yokohama Inst, Genomic Sci Ctr,Immunoinformat Res Team, Adv Genome Informat Technol Grp,Tsurumi Ku, Kanagawa 2300045, Japan
[2] Inst Infocomm Res, Knowledge Extract Lab, Singapore 119613, Singapore
[3] Natl Univ Singapore, Fac Med, Dept Biochem, Singapore 117597, Singapore
[4] Nanyang Technol Univ, Sch Biol Sci, Div Genomics & Genet, Singapore 637551, Singapore
[5] Natl Univ Singapore, Natl Univ Hosp, Dept Obstet & Gynecol, Singapore 119074, Singapore
[6] Univ Western Cape, S African Natl Bioinformat Inst, ZA-7535 Bellville, South Africa
[7] Brigham Young Univ, Dept Mol Biol & Microbiol, Provo, UT 84602 USA
[8] Univ Queensland, Inst Mol Biosci, ARC Special Res Ctr Funct & Appl Genomics, Brisbane, Qld 4072, Australia
[9] RIKEN, Yokohama Inst, Genomic Sci Ctr,Genome Explorat Res Grp, Genome Network Project Core Grp,Tsurumi Ku, Kanagawa 2300045, Japan
[10] RIKEN, Wako Inst, Discovery Res Inst, Genome Sci Lab, Wako, Saitama 3510198, Japan
关键词
D O I
10.1186/1471-2105-7-S5-S8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Mammalian antimicrobial peptides (AMPs) are effectors of the innate immune response. A multitude of signals coming from pathways of mammalian pathogen/pattern recognition receptors and other proteins affect the expression of AMP-coding genes (AMPcgs). For many AMPcgs the promoter elements and transcription factors that control their tissue cell-specific expression have yet to be fully identified and characterized. Results: Based upon the RIKEN full-length cDNA and public sequence data derived from human, mouse and rat, we identified 178 candidate AMP transcripts derived from 61 genes belonging to 29 AMP families. However, only for 31 mouse genes belonging to 22 AMP families we were able to determine true orthologous relationships with 30 human and 15 rat sequences. We screened the promoter regions of AMPcgs in the three species for motifs by an ab initio motif finding method and analyzed the derived promoter characteristics. Promoter models were developed for alpha-defensins, penk and zap AMP families. The results suggest a core set of transcription factors (TFs) that regulate the transcription of AMPcg families in mouse, rat and human. The three most frequent core TFs groups include liver, nervous system-specific and nuclear hormone receptors (NHRs). Out of 440 novel TF-binding motifs enriched in promoters of AMPcgs, while the other four motifs appear to be species-specific. Conclusion: Our large-scale computational analysis of promoters of 22 families of AMPcgs across three mammalian species suggests that their key transcriptional regulators are likely to be TFs of the liver-, nervous system-specific and NHR groups. The computationally inferred promoter elements and potential TF binding motifs provide a rich resource for targeted experimental validation of TF binding and signaling studies that aim at the regulation of mouse, rat or human AMPcgs.
引用
收藏
页数:14
相关论文
共 62 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   MEME: discovering and analyzing DNA and protein sequence motifs [J].
Bailey, Timothy L. ;
Williams, Nadya ;
Misleh, Chris ;
Li, Wilfred W. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W369-W373
[3]  
BAYELE HK, 2006, IN PRESS BLOOD 0810
[4]   ANTIMIC: a database of antimicrobial sequences [J].
Brahmachary, M ;
Krishnan, SPT ;
Koh, JLY ;
Khan, AM ;
Seah, SH ;
Tan, TW ;
Brusic, V ;
Bajic, VB .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D586-D589
[5]   Meis1a suppresses differentiation by G-CSF and promotes proliferation by SCF: Potential mechanisms of cooperativity with Hoxa9 in myeloid leukemia [J].
Calvo, KR ;
Knoepfler, PS ;
Sykes, DB ;
Pasillas, MP ;
Kamps, MP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :13120-13125
[6]   The transcriptional landscape of the mammalian genome [J].
Carninci, P ;
Kasukawa, T ;
Katayama, S ;
Gough, J ;
Frith, MC ;
Maeda, N ;
Oyama, R ;
Ravasi, T ;
Lenhard, B ;
Wells, C ;
Kodzius, R ;
Shimokawa, K ;
Bajic, VB ;
Brenner, SE ;
Batalov, S ;
Forrest, ARR ;
Zavolan, M ;
Davis, MJ ;
Wilming, LG ;
Aidinis, V ;
Allen, JE ;
Ambesi-Impiombato, X ;
Apweiler, R ;
Aturaliya, RN ;
Bailey, TL ;
Bansal, M ;
Baxter, L ;
Beisel, KW ;
Bersano, T ;
Bono, H ;
Chalk, AM ;
Chiu, KP ;
Choudhary, V ;
Christoffels, A ;
Clutterbuck, DR ;
Crowe, ML ;
Dalla, E ;
Dalrymple, BP ;
de Bono, B ;
Della Gatta, G ;
di Bernardo, D ;
Down, T ;
Engstrom, P ;
Fagiolini, M ;
Faulkner, G ;
Fletcher, CF ;
Fukushima, T ;
Furuno, M ;
Futaki, S ;
Gariboldi, M .
SCIENCE, 2005, 309 (5740) :1559-1563
[7]  
Chen WG, 2003, J NEUROSCI, V23, P2572
[8]   Lactoferrin sequestration and its contribution to iron-deficiency anemia in Helicobacter pylori-infected gastric mucosa [J].
Choe, YH ;
Oh, YJ ;
Lee, NG ;
Imoto, I ;
Adachi, Y ;
Toyoda, N ;
Gabazza, EC .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2003, 18 (08) :980-985
[9]   FIE2: a program for the extraction of genomic DNA sequences around the start and translation initiation site of human genes [J].
Chong, A ;
Zhang, GL ;
Bajic, VB .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3546-3553
[10]   Finding functional features in Saccharomyces genomes by phylogenetic footprinting [J].
Cliften, P ;
Sudarsanam, P ;
Desikan, A ;
Fulton, L ;
Fulton, B ;
Majors, J ;
Waterston, R ;
Cohen, BA ;
Johnston, M .
SCIENCE, 2003, 301 (5629) :71-76