In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating

被引:93
作者
Balani, K. [1 ]
Zhang, T. [2 ]
Karakoti, A. [3 ,4 ]
Li, W. Z. [2 ]
Seal, S. [3 ,4 ]
Agarwal, A. [1 ]
机构
[1] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
[2] Florida Int Univ, Dept Phys, Miami, FL 33174 USA
[3] Univ Cent Florida, Nanosci & Technol Ctr, AMPAC, Orlando, FL 32816 USA
[4] Univ Cent Florida, Nanosci & Technol Ctr, MMAE, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
plasma spraying; chemical vapor deposition (CVD); transmission electron microscopy (TEM); toughness; nanocrystalline materials;
D O I
10.1016/j.actamat.2007.10.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon nanotubes (CNT) are potential reinforcements for toughening the ceramic matrix. The critical issue of avoiding CNT agglomeration and introducing CNT-matrix anchoring has challenged many researchers to improve the mechanical propel-ties of the CNT reinforced nanocomposite. In the current work, dispersed CNTs are grown on Al2O3 powder particles in situ by the catalytic chemical vapor deposition (CCVD) technique. Consequently, 0.5 wt.% CNT-reinforced Al2O3 particles were successfully plasma sprayed to obtain a 400 mu m thick coating on the steel substrate. In situ CNTs grown on Al2O3 shows a promising enhancement in hardness and fracture toughness of the plasma-sprayed coating attributed to the existence of strong metallurgical bonding between Al2O3 particles and CNTs. In addition, CNT tentacles have imparted multi-directional reinforcement in securing the Al2O3 splats. High-resolution transmission electron microscopy shows interfacial fusion between Al2O3 and CNT and the formation of Y-junction nanotubes. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:571 / 579
页数:9
相关论文
共 34 条
[1]  
ALIEV AE, 2007, MAT RES SOC P, V963
[2]  
ANTIS GR, 1981, J AM CERAM SOC, V64, P533, DOI DOI 10.1111/J.1151-2916.1981.TB10320.X
[3]  
BALANI K, 2007, ACTA MAT COMMUN
[4]   Role of powder treatment and carbon nanotube dispersion in the fracture toughening of plasma-sprayed aluminum oxide-carbon nanotube nanocomposite [J].
Balani, Kantesh ;
Bakshi, Srinivasa Rao ;
Chen, Yao ;
Laha, Tapas ;
Agarwal, Arvind .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (10) :3553-3562
[5]   Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro [J].
Balani, Kantesh ;
Anderson, Rebecca ;
Laha, Tapas ;
Andara, Melanie ;
Tercero, Jorge ;
Crumpler, Eric ;
Agarwal, Arvind .
BIOMATERIALS, 2007, 28 (04) :618-624
[6]   Characterization methods of carbon nanotubes: a review [J].
Belin, T ;
Epron, F .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 119 (02) :105-118
[7]   In-situ particle temperature, velocity, and size measurements in DC arc plasma thermal sprays [J].
Cetegen, BM ;
Yu, W .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 1999, 8 (01) :57-67
[8]   Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process [J].
Cha, SI ;
Kim, KT ;
Lee, KH ;
Mo, CB ;
Hong, SH .
SCRIPTA MATERIALIA, 2005, 53 (07) :793-797
[9]  
CLARKE DR, 1978, J APPL PHYS, V49, P2407, DOI 10.1063/1.325135
[10]   Nanotube nanodevice [J].
Collins, PG ;
Zettl, A ;
Bando, H ;
Thess, A ;
Smalley, RE .
SCIENCE, 1997, 278 (5335) :100-103