Down-regulation of neuronal nitric oxide synthase by nitric oxide after oxygen-glucose deprivation in rat forebrain slices

被引:40
作者
De Alba, J
Cárdenas, A
Moro, MA [1 ]
Leza, JC
Lorenzo, P
Boscá, L
Lizasoain, I
机构
[1] Univ Complutense Madrid, Fac Med, Dept Farmacol, E-28040 Madrid, Spain
[2] Univ Complutense Madrid, Fac Farm, CSIC, Inst Bioquim, E-28040 Madrid, Spain
关键词
nitric oxide synthase; CNS; cerebral ischemia;
D O I
10.1046/j.1471-4159.1999.0720248.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity, Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD, The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor (Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.
引用
收藏
页码:248 / 254
页数:7
相关论文
共 40 条
[1]   NEURONAL NITRIC-OXIDE SYNTHASE SELF-INACTIVATES BY FORMING A FERROUS-NITROSYL COMPLEX DURING AEROBIC CATALYSIS [J].
ABUSOUD, HM ;
WANG, JL ;
ROUSSEAU, DL ;
FUKUTO, JM ;
IGNARRO, LJ ;
STUEHR, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (39) :22997-23006
[2]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[3]   REACTION OF SUPEROXIDE WITH NITRIC-OXIDE TO FORM PEROXONITRITE IN ALKALINE AQUEOUS-SOLUTION [J].
BLOUGH, NV ;
ZAFIRIOU, OC .
INORGANIC CHEMISTRY, 1985, 24 (22) :3502-3504
[4]   THE COMPARATIVE TOXICITY OF NITRIC-OXIDE AND PEROXYNITRITE TO ESCHERICHIA-COLI [J].
BRUNELLI, L ;
CROW, JP ;
BECKMAN, JS .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 316 (01) :327-334
[5]   NEGATIVE FEEDBACK-REGULATION OF ENDOTHELIAL-CELL FUNCTION BY NITRIC-OXIDE [J].
BUGA, GM ;
GRISCAVAGE, JM ;
ROGERS, NE ;
IGNARRO, LJ .
CIRCULATION RESEARCH, 1993, 73 (05) :808-812
[6]   Differential regulation of nitric oxide synthase mRNA expression by lipopolysaccharide and pro-inflammatory cytokines in fetal hepatocytes treated with cycloheximide [J].
Casado, M ;
DiazGuerra, MJM ;
Bosca, L ;
MartinSanz, P .
BIOCHEMICAL JOURNAL, 1997, 327 :819-823
[7]   ISOLATION OF BIOLOGICALLY-ACTIVE RIBONUCLEIC-ACID FROM SOURCES ENRICHED IN RIBONUCLEASE [J].
CHIRGWIN, JM ;
PRZYBYLA, AE ;
MACDONALD, RJ ;
RUTTER, WJ .
BIOCHEMISTRY, 1979, 18 (24) :5294-5299
[8]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[9]   INDUCTION OF NITRIC-OXIDE SYNTHASE MESSENGER-RNA EXPRESSION - SUPPRESSION BY EXOGENOUS NITRIC-OXIDE [J].
COLASANTI, M ;
PERSICHINI, T ;
MENEGAZZI, M ;
MARIOTTO, S ;
GIORDANO, E ;
CALDARERA, CM ;
SOGOS, V ;
LAURO, GM ;
SUZUKI, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (45) :26731-26733
[10]   NITRIC-OXIDE MEDIATES GLUTAMATE NEUROTOXICITY IN PRIMARY CORTICAL CULTURES [J].
DAWSON, VL ;
DAWSON, TM ;
LONDON, ED ;
BREDT, DS ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (14) :6368-6371