A toll receptor and a cytokine, Toll5A and Spz1C, are involved in toll antifungal immune signaling in the mosquito Aedes aegypti

被引:77
作者
Shin, Sang Woon
Bian, Guowu
Raikhel, Alexander S. [1 ]
机构
[1] Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Inst Integrat Genome Biol, Riverside, CA 92521 USA
关键词
D O I
10.1074/jbc.M608912200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The fungal-specific immune response in the mosquito Aedes aegypti involves the Toll immune pathway transduced through REL1, a homologue of the NF-kappa B transcription factor Drosophila Dorsal. The Toll receptor and its ligand, Spatzle (Spz), link extracellular immune signals to the Toll intracellular transduction pathway. Five homologues to the Drosophila Toll (Toll1) receptor (Toll1A, Toll1B, Toll5A, Toll5B, and Toll4) and three homologues to the Drosophila cytokine Spatzle (Spz1A, 1B, and 1C) were identified from genomic and cDNA sequence data bases. Toll1A, Toll5A, Toll5B, and Spz1A were specifically induced in the mosquito fat body following fungal challenge. This transcriptional up-regulation was mediated by REL1. Spz1C was constitutively expressed in the mosquito fat body, whereas Spz1B and Toll4 were primarily expressed in ovarian tissues of female mosquitoes. The transcripts of Toll1B were only detected in early stages of mosquito embryos. RNA interference knock down of Toll5A and Spz1C resulted in two phenotypes of Aedes Toll/REL1 pathway deficiency: decreased induction of Aedes Serpin-27A following fungal challenge and increased susceptibility to the entomopathogenic fungus Beauveria bassiana. These data suggest that Toll5A and Spz1C function as cytokine receptor systems specific to the Toll receptor-mediated immune response following fungal challenge in the mosquito fat body.
引用
收藏
页码:39388 / 39395
页数:8
相关论文
共 34 条
[1]   ESTABLISHMENT OF DORSAL-VENTRAL POLARITY IN THE DROSOPHILA EMBRYO - THE INDUCTION OF POLARITY BY THE TOLL GENE-PRODUCT [J].
ANDERSON, KV ;
BOKLA, L ;
NUSSLEINVOLHARD, C .
CELL, 1985, 42 (03) :791-798
[2]   ESTABLISHMENT OF DORSAL-VENTRAL POLARITY IN THE DROSOPHILA EMBRYO - GENETIC-STUDIES ON THE ROLE OF THE TOLL GENE-PRODUCT [J].
ANDERSON, KV ;
JURGENS, G ;
NUSSLEINVOLHARD, C .
CELL, 1985, 42 (03) :779-789
[3]   Genetic manipulation of vectors: A potential novel approach for control of vector-borne diseases [J].
Beaty, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (19) :10295-10297
[4]   Malaria parasite development in mosquitoes [J].
Beier, JC .
ANNUAL REVIEW OF ENTOMOLOGY, 1998, 43 :519-543
[5]   Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti [J].
Bian, G ;
Shin, SW ;
Cheon, HM ;
Kokoza, V ;
Raikhel, AS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (38) :13568-13573
[6]  
Breman JG, 2001, AM J TROP MED HYG, V64, P1
[7]   Drosophila:: The genetics of innate immune recognition and response [J].
Brennan, CA ;
Anderson, KV .
ANNUAL REVIEW OF IMMUNOLOGY, 2004, 22 :457-483
[8]   Automated whole-genome multiple alignment of rat, mouse, and human [J].
Brudno, M ;
Poliakov, A ;
Salamov, A ;
Cooper, GM ;
Sidow, A ;
Rubin, EM ;
Solovyev, V ;
Batzoglou, S ;
Dubchak, I .
GENOME RESEARCH, 2004, 14 (04) :685-692
[9]   Immunity-related genes and gene families in Anopheles gambiae [J].
Christophides, GK ;
Zdobnov, E ;
Barillas-Mury, C ;
Birney, E ;
Blandin, S ;
Blass, C ;
Brey, PT ;
Collins, FH ;
Danielli, A ;
Dimopoulos, G ;
Hetru, C ;
Hoa, NT ;
Hoffmann, JA ;
Kanzok, SM ;
Letunic, I ;
Levashina, EA ;
Loukeris, TG ;
Lycett, G ;
Meister, S ;
Michel, K ;
Moita, LF ;
Müller, HM ;
Osta, MA ;
Paskewitz, SM ;
Reichhart, JM ;
Rzhetsky, A ;
Troxler, L ;
Vernick, KD ;
Vlachou, D ;
Volz, J ;
von Mering, C ;
Xu, JN ;
Zheng, LB ;
Bork, P ;
Kafatos, FC .
SCIENCE, 2002, 298 (5591) :159-165
[10]   The Toll and Imd pathways are the major regulators of the immune response in Drosophila [J].
De Gregorio, E ;
Spellman, PT ;
Tzou, P ;
Rubin, GM ;
Lemaitre, B .
EMBO JOURNAL, 2002, 21 (11) :2568-2579