The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system

被引:129
作者
Park, Sae-Hun
Bolender, Natalia
Eisele, Frederik
Kostova, Zlatka
Takeuchi, Junko
Coffino, Philip
Wolf, Dieter H. [1 ]
机构
[1] Univ Stuttgart, Inst Biochem, D-70569 Stuttgart, Germany
[2] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94143 USA
关键词
D O I
10.1091/mbc.E06-04-0338
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The mechanism of protein quality control and elimination of misfolded proteins in the cytoplasm is poorly understood. We studied the involvement of cytoplasmic factors required for degradation of two endoplasmic reticulum (ER)-import-defective mutated derivatives of carboxypeptidase yscY (Delta ssCPY* and Delta ssCPY*-GFP) and also examined the requirements for degradation of the corresponding wild-type enzyme made ER-import incompetent by removal of its signal sequence (Delta ssCPY). All these protein species are rapidly degraded via the ubiquitin-proteasome system. Degradation requires the ubiquitin-conjugating enzymes Ubc4p and Ubc5p, the cytoplasmic Hsp70 Ssa chaperone machinery, and the Hsp70 cochaperone Ydj1p. Neither the Hsp90 chaperones nor Hsp104 or the small heat-shock proteins Hsp26 and Hsp42 are involved in the degradation process. Elimination of a GFP fusion (GFP-cODC), containing the C-terminal 37 amino acids of ornithine decarboxylase (cODC) directing this enzyme to the proteasome, is independent of Ssa1p function. Fusion of Delta ssCPY* to GFP-cODC to form Delta ssCPY*-GFP-cODC reimposes a dependency on the Ssa1p chaperone for degradation. Evidently, the misfolded protein domain dictates the route of protein elimination. These data and our further results give evidence that the Ssa1p-Ydj1p machinery recognizes misfolded protein domains, keeps misfolded proteins soluble, solubilizes precipitated protein material, and escorts and delivers misfolded proteins in the ubiquitinated state to the proteasome for degradation.
引用
收藏
页码:153 / 165
页数:13
相关论文
共 94 条
[1]  
Ausubel FM, 1992, CURRENT PROTOCOLS MO
[2]   Roles of molecular chaperones in protein misfolding diseases [J].
Barral, JM ;
Broadley, SA ;
Schaffar, G ;
Hartl, FU .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2004, 15 (01) :17-29
[3]  
Becker J, 1996, MOL CELL BIOL, V16, P4378
[4]   The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct [J].
Brodsky, JL ;
Werner, ED ;
Dubas, ME ;
Goeckeler, JL ;
Kruse, KB ;
McCracken, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (06) :3453-3460
[5]   ER protein quality control and proteasome-mediated protein degradation [J].
Brodsky, JL ;
McCracken, AA .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 1999, 10 (05) :507-513
[6]   Molecular chaperones and protein quality control [J].
Bukau, Bernd ;
Weissman, Jonathan ;
Horwich, Arthur .
CELL, 2006, 125 (03) :443-451
[7]   YDJ1P FACILITATES POLYPEPTIDE TRANSLOCATION ACROSS DIFFERENT INTRACELLULAR MEMBRANES BY A CONSERVED MECHANISM [J].
CAPLAN, AJ ;
CYR, DM ;
DOUGLAS, MG .
CELL, 1992, 71 (07) :1143-1155
[8]   A chaperone pathway in protein disaggregation - Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104 [J].
Cashikar, AG ;
Duennwald, M ;
Lindquist, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (25) :23869-23875
[9]  
Cheetham ME, 1998, CELL STRESS CHAPERON, V3, P28, DOI 10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO
[10]  
2