Etiologic subtypes of attention-deficit/hyperactivity disorder: Brain imaging, molecular genetic and environmental factors and the dopamine hypothesis

被引:416
作者
Swanson, James M.
Kinsbourne, Marcel
Nigg, Joel
Lanphear, Bruce
Stefanatos, Gerry A.
Volkow, Nora
Taylor, Eric
Casey, B. J.
Castellanos, F. Xavier
Wadhwa, Pathik D.
机构
[1] Univ Calif Irvine, Dept Pediat, Irvine, CA 92612 USA
[2] New Sch Social Res, Dept Psychol, New York, NY 10011 USA
[3] Michigan State Univ, Dept Psychol, E Lansing, MI 48824 USA
[4] Childrens Hosp, Dept Pediat, Cincinnati, OH 45229 USA
[5] Albert Einstein Med Ctr, Cognit Neurophysiol Lab, Philadelphia, PA 19141 USA
[6] Natl Inst Drug Abuse, Rockville, MD USA
[7] Brookhaven Natl Lab, Rockville, MD USA
[8] Inst Psychiat, Dept Child Psychiat, London, England
[9] Cornell Univ, Weill Coll Med, Sackler Inst, New York, NY USA
[10] NYU, Dept Child Psychiat & Adolescent, New York, NY USA
[11] Univ Calif Irvine, Dept Psychiat & OB GYN, Irvine, CA 92612 USA
关键词
ADHD (or Attention-Deficit/Hyperactivity disorder); dopamine; molecular genetics; brain imaging; environmental risk; minimal brain dysfunction;
D O I
10.1007/s11065-007-9019-9
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Multiple theories of Attention-Deficit/Hyperactivity Disorder (ADHD) have been proposed, but one that has stood the test of time is the dopamine deficit theory. We review the narrow literature from recent brain imaging and molecular genetic studies that has improved our understanding of the role of dopamine in manifestation of symptoms of ADHD, performance deficits on neuropsychological tasks, and response to stimulant medication that constitutes the most common treatment of this disorder. First, we consider evidence of the presence of dopamine deficits based on the recent literature that (1) confinns abnormalities in dopamine-modulated frontal-striatal circuits, reflected by size (smaller-than-average components) and function (hypoactivation); (2) clarifies the agonist effects of stimulant medication on dopaminergic mechanisms at the synaptic and circuit level of analysis; and (3) challenges the most-widely accepted ADHD-related neural abnormality in the dopamine system (higher-than-normal dopamine transporter [DAT] density). Second, we discuss possible genetic etiologies of dopamine deficits based on recent molecular genetic literature, including (1) multiple replications that confirm the association of ADHD with candidate genes related to the dopamine receptor D4 (DRD4) and the DAT; (2) replication of differences in performance of neuropsychological tasks as a function of the DRD4 genotype; and (3) multiple genome-wide linkage scans that demonstrate the limitations of this method when applied to complex disorders but implicate additional genes that may contribute to the genetic basis of ADHD. Third, we review possible environmental etiologies of dopamine deficits based on recent studies of (1) toxic substances that may affect the dopamine system in early development and contribute substantially to the etiology of ADHD; (2) fetal adaptations in dopamine systems in response to stress that may alter early development with lasting effects, as proposed by the developmental origins of health and disease hypothesis; and (3) gene-environment interactions that may moderate selective damage or adaptation of dopamine neurons. Based on these reviews, we identify critical issues about etiologic subtypes of ADHD that may involve dopamine, discuss methods that could be used to address these issues, and review old and new theories that may direct research in this area in the future.
引用
收藏
页码:39 / 59
页数:21
相关论文
共 147 条
[2]  
ALTMAN J, 1986, LEARNING DISABILITIE
[3]   AROUSAL, SUPPRESSION, AND PERSISTENCE - FRUSTRATION THEORY, ATTENTION, AND ITS DISORDERS [J].
AMSEL, A .
COGNITION & EMOTION, 1990, 4 (03) :239-268
[4]   Attention-deficit/hyperactivity disorder in a population isolate: Linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11 [J].
Arcos-Burgos, M ;
Castellanos, FX ;
Pineda, D ;
Lopera, F ;
Palacio, JD ;
Palacio, LG ;
Rapoport, JL ;
Berg, K ;
Bailey-Wilson, JE ;
Muenke, M .
AMERICAN JOURNAL OF HUMAN GENETICS, 2004, 75 (06) :998-1014
[5]  
Arnsten AFT, 2006, J CLIN PSYCHIAT, V67, P7
[6]   Stimulants: Therapeutic actions in ADHD [J].
Arnsten, Amy F. T. .
NEUROPSYCHOPHARMACOLOGY, 2006, 31 (11) :2376-2383
[7]   A whole-genome scan in 164 Dutch sib pairs with attention-deficit/hyperactivity disorder: Suggestive evidence for linkage on chromosomes 7p and 15q [J].
Bakker, SC ;
van der Meulen, EM ;
Buitelaar, JK ;
Sandkuijl, LA ;
Pauls, DL ;
Monsuur, AJ ;
van't Slot, R ;
Minderaa, RB ;
Gunning, WB ;
Pearson, PL ;
Sinke, RJ .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 72 (05) :1251-1260
[8]  
BARKER DJP, 1989, LANCET, V2, P577
[9]   Stimulant and psychosocial treatment of ADHD in Latino/Hispanic children [J].
Bauermeister, JJ ;
Canino, G ;
Bravo, M ;
Ramírez, R ;
Jensen, PS ;
Chavez, L ;
Martínez-Taboas, A ;
Ribera, J ;
Alegría, M ;
García, P .
JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 2003, 42 (07) :851-855
[10]  
BAX M, 1962, MINIMAL CEREBRAL DYS