Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis

被引:132
作者
Hyvarinen, Aapo [1 ]
Ramkumar, Pavan [2 ,3 ]
Parkkonen, Lauri [2 ,3 ]
Hari, Riitta [2 ,3 ,4 ]
机构
[1] Univ Helsinki, Dept Comp Sci, Dept Math & Stat, HIIT, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, Dept Psychol, FIN-00014 Helsinki, Finland
[3] Aalto Univ, LTL, Brain Res Unit, FIN-02150 Espoo, Finland
[4] Aalto Univ, Adv Magnet Imaging Ctr, FIN-02150 Espoo, Finland
关键词
Magnetoencephalography (MEG); Independent component analysis; Brain rhythms; Resting state; BLIND SOURCE SEPARATION; CONNECTIVITY; ARTIFACTS; ALGORITHM; BRAIN; EEG;
D O I
10.1016/j.neuroimage.2009.08.028
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Analysis of spontaneous EEG/MEG needs unsupervised learning methods. While independent component analysis (ICA) has been successfully applied on spontaneous fMRI, it seems to be too sensitive to technical artifacts in EEG/MEG. We propose to apply ICA on short-time Fourier transforms of EEG/MEG signals, in order to find more "interesting" sources than with time-domain ICA, and to more meaningfully sort the obtained components. The method is especially useful for finding sources of rhythmic activity. Furthermore, we propose to use a complex mixing matrix to model Sources which are spatially extended and have different phases in different EEG/MEG channels. Simulations with artificial data and experiments on resting-state MEG demonstrate the utility of the method. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:257 / 271
页数:15
相关论文
共 32 条
[1]  
Amari S, 1996, ADV NEUR IN, V8, P757
[2]   Complex independent component analysis of frequency-domain electroencephalographic data [J].
Anemüller, J ;
Sejnowski, TJ ;
Makeig, S .
NEURAL NETWORKS, 2003, 16 (09) :1311-1323
[3]   Spatio-temporal dynamics in fMRI recordings revealed with complex independent component analysis [J].
Anemuller, Jorn ;
Duann, Jeng-Ren ;
Sejnowski, Terrence J. ;
Makeig, Scott .
NEUROCOMPUTING, 2006, 69 (13-15) :1502-1512
[4]  
[Anonymous], P INT C ART NEUR NET
[5]   The chronoarchitecture of the human brain - natural viewing conditions reveal a time-based anatomy of the brain [J].
Bartels, A ;
Zeki, S .
NEUROIMAGE, 2004, 22 (01) :419-433
[6]   SCALE MIXING OF SYMMETRIC DISTRIBUTIONS WITH ZERO MEANS [J].
BEALE, EML ;
MALLOWS, CL .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (04) :1145-1151
[7]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[8]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[9]   A blind source separation technique using second-order statistics [J].
Belouchrani, A ;
AbedMeraim, K ;
Cardoso, JF ;
Moulines, E .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) :434-444
[10]  
Bingham E, 2000, Int J Neural Syst, V10, P1, DOI 10.1142/S0129065700000028