Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite

被引:233
作者
Chaise, A. [1 ,2 ]
de Rango, P. [1 ,2 ]
Marty, Ph. [3 ]
Fruchart, D. [1 ,2 ]
Miraglia, S. [1 ,2 ]
Olives, R. [4 ]
Garrier, S. [1 ,2 ]
机构
[1] CNRS, Inst NEEL, F-38042 Grenoble, France
[2] CNRS, CRETA, F-38042 Grenoble, France
[3] Lab Ecoulements Geophys & Ind, F-38041 Grenoble, France
[4] CNRS, PROMES, F-66100 Perpignan, France
关键词
Hydrogen storage; Magnesium hydride; Expanded natural graphite; Reaction kinetics; Heat transfer; THERMAL-CONDUCTIVITY; HEAT-EXCHANGER; METAL; STORAGE; DESIGN;
D O I
10.1016/j.ijhydene.2009.07.112
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnesium hydrogenation reaction being exothermic and limited by heat removal, the thermal conductivity of ball-milled magnesium hydride (BM MgH2) powders has to be improved. The compression of BM MgH2 associated to Expanded Natural Graphite (ENG) to form compacted disks has been investigated. Using BM MgH2 without ENG, its compression reduces the porosity and increases its volumetric hydrogen storage capacity. Incorporating ENG before compression drastically improves the thermal conductivity in the direction normal to compression axis. Moreover, the thermal conductivity increases linearly with ENG content, and can be adjusted to fulfill the loading time requirements. The thermodynamic properties and intrinsic sorption kinetics remain unchanged. However, both compression and ENG incorporation reduce the hydrogen permeability, especially in the direction parallel to the compression axis, which imposes a limit to the disk thickness. A small-size instrumented tank has been loaded with either pure BM MgH2 powder or with disks having different ENG contents. The results obtained for both cases are compared. (c) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved
引用
收藏
页码:8589 / 8596
页数:8
相关论文
共 15 条
[1]   Nanostructured magnesium hydride for pilot tank development [J].
de Rango, P. ;
Chaise, A. ;
Charbonnier, J. ;
Fruchart, D. ;
Jehan, M. ;
Marty, Ph. ;
Miraglia, S. ;
Rivoirard, S. ;
Skryabina, N. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 446 :52-57
[2]  
DERANGO P, 2009, Patent No. 2009080986
[3]  
DERANGO P, 2009, Patent No. 2009080975
[4]  
ERGUN S, 1952, CHEM ENG PROG, V48, P89
[5]  
Forchheimer P, 1901, Z VER DTSCH ING, V45, P1781
[6]   Thermal conductivity of metal hydride materials for storage of hydrogen: Experimental investigation [J].
Hahne, E ;
Kallweit, J .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1998, 23 (02) :107-114
[7]   Structure of nanocomposite metal hydrides [J].
Huot, J ;
Pelletier, JF ;
Liang, G ;
Sutton, M ;
Schulz, R .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 330 :727-731
[8]   Measurement of the effective thermal conductivity of a Mg-MgH2 packed bed with oscillating heating [J].
Kapischke, J ;
Hapke, J .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 1998, 17 (04) :347-355
[9]   Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors [J].
Kaplan, Y. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (05) :2288-2294
[10]   Metal hydride compacts of improved thermal conductivity [J].
Kim, KJ ;
Montoya, B ;
Razani, A ;
Lee, KH .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (06) :609-613