The Cytophaga hutchinsonii ChTPSP: First Characterized Bifunctional TPS-TPP Protein as Putative Ancestor of All Eukaryotic Trehalose Biosynthesis Proteins

被引:47
作者
Avonce, Nelson [1 ,2 ]
Wuyts, Jan [3 ]
Verschooten, Katrien [1 ,2 ]
Vandesteene, Lies [1 ,2 ]
Van Dijck, Patrick [1 ,2 ]
机构
[1] VIB, Dept Mol Microbiol, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, Mol Cell Biol Lab, Inst Bot & Microbiol, B-3001 Heverlee, Belgium
[3] VIB, Bioinformat Training & Serv Facil, B-9052 Zwijnaarde, Belgium
关键词
trehalose; TPS; TPP; Arabidopsis thaliana; plant evolution; SACCHAROMYCES-CEREVISIAE; ARABIDOPSIS-THALIANA; TREHALOSE-6-PHOSPHATE; SYNTHASE; METABOLISM; EVOLUTION; YEAST; GENE; ACCUMULATION; TOLERANCE;
D O I
10.1093/molbev/msp241
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The most widely distributed pathway to synthesize trehalose in nature consists of two consecutive enzymatic reactions with a trehalose-6-P (T6P)-synthase (TPS) enzyme, producing the intermediate T6P, and a T6P-phosphatase (TPP) enzyme, which dephosphorylates T6P to produce trehalose and inorganic phosphate. In plants, these enzymes are called Class I and Class II proteins, respectively, with some Class I proteins being active enzymes. The Class II proteins possess both TPS and TPP consensus regions but appear to have lost enzymatic activity during evolution. Plants also contain an extra group of enzymes of small protein size, of which some members have been characterized as functional TPPs. These Class III proteins have less sequence similarity with the Class I and Class II proteins. Here, we characterize for the first time, by using biochemical analysis and yeast growth complementation assays, the existence of a natural TPS-TPP bifunctional enzyme found in the bacterial species Cytophaga hutchinsonii. Through phylogenetic analysis, we show that prokaryotic genes such as ChTPSP might be the ancestor of the eukaryotic trehalose biosynthesis genes. Second, we show that plants have recruited during evolution, possibly by horizontal transfer from bacteria such as Rhodoferax ferrireducens, a new type of small protein, encoding TPP activity, which have been named Class III proteins. RfTPP has very high TPP activity upon expression in yeast. Finally, we demonstrate that TPS gene duplication, the recruitment of the Class III enzymes, and recruitment of an N-terminal regulatory element, which regulates the Class I enzyme activity in higher plants, were initiated very early in eukaryan evolution as the three classes of trehalose biosynthesis genes are already present in the alga Ostreococcus tauri.
引用
收藏
页码:359 / 369
页数:11
相关论文
共 57 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Trehalose metabolism and glucose sensing in plants [J].
Avonce, N ;
Leyman, B ;
Thevelein, J ;
Iturriaga, G .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 :276-279
[3]   The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling [J].
Avonce, N ;
Leyman, B ;
Mascorro-Gallardo, JO ;
Van Dijck, P ;
Thevelein, JM ;
Iturriaga, G .
PLANT PHYSIOLOGY, 2004, 136 (03) :3649-3659
[4]   Insights on the evolution of trehalose biosynthesis [J].
Avonce, Nelson ;
Mendoza-Vargas, Alfredo ;
Morett, Enrique ;
Iturriaga, Gabriel .
BMC EVOLUTIONARY BIOLOGY, 2006, 6 (1)
[5]   A central integrator of transcription networks in plant stress and energy signalling [J].
Baena-Gonzalez, Elena ;
Rolland, Filip ;
Thevelein, Johan M. ;
Sheen, Jen .
NATURE, 2007, 448 (7156) :938-U10
[6]   Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex [J].
Bell, W ;
Sun, WN ;
Hohmann, S ;
Wera, S ;
Reinders, A ;
De Virgilio, C ;
Wiemken, A ;
Thevelein, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33311-33319
[7]   Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase [J].
Blázquez, MA ;
Santos, E ;
Flores, CL ;
Martínez-Zapater, JM ;
Salinas, J ;
Gancedo, C .
PLANT JOURNAL, 1998, 13 (05) :685-689
[8]  
Bonini BM, 2004, MYCOTA, V3, P291
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   Rooting the tree of life by transition analyses [J].
Cavalier-Smith, Thomas .
BIOLOGY DIRECT, 2006, 1 (1)