Measurement of HO2NO2 in the free troposphere during the intercontinental chemical transport experiment -: North America 2004

被引:60
作者
Kim, S. [1 ]
Huey, L. G.
Stickel, R. E.
Tanner, D. J.
Crawford, J. H.
Olson, J. R.
Chen, G.
Brune, W. H.
Ren, X.
Lesher, R.
Wooldridge, P. J.
Bertram, T. H.
Perring, A.
Cohen, R. C.
Lefer, B. L.
Shetter, R. E.
Avery, M.
Diskin, G.
Sokolik, I.
机构
[1] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[2] NASA, Langley Res Ctr, Hampton, VA 23665 USA
[3] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[6] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
关键词
D O I
10.1029/2006JD007676
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The first direct in situ measurements of HO2NO2 in the upper troposphere were performed from the NASA DC-8 during the Intercontinental Chemical Transport Experiment-North America 2004 with a chemical ionization mass spectrometer (CIMS). These measurements provide an independent diagnostic of HOx chemistry in the free troposphere and complement direct observations of HOx, because of the dual dependency of HO2NO2 on HOx and NOx. On average, the highest HO2NO2 mixing ratio of 76 pptv ( median = 77 pptv, sigma = 39 pptv) was observed at altitudes of 8-9 km. Simple steady state calculations of HO2NO2, constrained by measurements of HOx, NOx, and J values, are in good agreement (slope = 0.90, R-2 = 0.60, and z = 5.5-7.5 km) with measurements in the midtroposphere where thermal decomposition is the major loss process. Above 8 km the calculated steady state HO2NO2 is in poor agreement with observed values (R-2 = 0.20) and is typically larger by a factor of 2.4. Conversely, steady state calculations using model-derived HOx show reasonable agreement with the observed HO2NO2 in both the midtroposphere ( slope = 0.96, intercept = 7.0, and R-2 = 0.63) and upper troposphere ( slope = 0.80, intercept = 32.2, and R-2 = 0.58). These results indicate that observed HO2 and HO2NO2 are in poor agreement in the upper troposphere but that HO2NO2 levels are consistent with current photochemical theory.
引用
收藏
页数:10
相关论文
共 36 条
[1]   Chemical transport across the ITCZ in the central Pacific during an El Nino-Southern Oscillation cold phase event in March-April 1999 [J].
Avery, MA ;
Westberg, DJ ;
Fuelberg, HE ;
Newell, RE ;
Anderson, BE ;
Vay, SA ;
Sachse, GW ;
Blake, DR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D23) :32539-32553
[2]   Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS [J].
Brune, WH ;
Faloona, IC ;
Tan, D ;
Weinheimer, AJ ;
Campos, T ;
Ridley, BA ;
Vay, SA ;
Collins, JE ;
Sachse, GW ;
Jaegle, L ;
Jacob, DJ .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (10) :1701-1704
[3]   Measurements of the rate constant of HO2+NO2+N2-HO2NO2+N2 using near-infrared wavelength-modulation spectroscopy and UV-visible absorption spectroscopy [J].
Christensen, LE ;
Okumura, M ;
Sander, SP ;
Friedl, RR ;
Miller, CE ;
Sloan, JJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (01) :80-91
[4]   Assessment of upper tropospheric HOx sources over the tropical Pacific based on NASA GTE/PEM data:: Net effect on HOx and other photochemical parameters [J].
Crawford, J ;
Davis, D ;
Olson, J ;
Chen, G ;
Liu, S ;
Gregory, G ;
Barrick, J ;
Sachse, G ;
Sandholm, S ;
Heikes, B ;
Singh, H ;
Blake, D .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D13) :16255-16273
[5]   Coupled evolution of BrOx-ClOx-HOx-NOx chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer -: art. no. 8368 [J].
Evans, MJ ;
Jacob, DJ ;
Atlas, E ;
Cantrell, CA ;
Eisele, F ;
Flocke, F ;
Fried, A ;
Mauldin, RL ;
Ridley, BA ;
Wert, B ;
Talbot, R ;
Blake, D ;
Heikes, B ;
Snow, J ;
Walega, J ;
Weinheimer, AJ ;
Dibb, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D4)
[6]   Observations of HOx and its relationship with NOx in the upper troposphere during SONEX [J].
Faloona, I ;
Tan, D ;
Brune, WH ;
Jaeglé, L ;
Jacob, DJ ;
Kondo, Y ;
Koike, M ;
Chatfield, R ;
Pueschel, R ;
Ferry, G ;
Sachse, G ;
Vay, S ;
Anderson, B ;
Hannon, J ;
Fuelberg, H .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D3) :3771-3783
[7]   A laser-induced fluorescence instrument for detecting tropospheric OH and HO2:: Characteristics and calibration [J].
Faloona, IC ;
Tan, D ;
Lesher, RL ;
Hazen, NL ;
Frame, CL ;
Simpas, JB ;
Harder, H ;
Martinez, M ;
Di Carlo, P ;
Ren, XR ;
Brune, WH .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 2004, 47 (02) :139-167
[8]   Thermal decomposition of HO2NO2 (peroxynitric acid, PNA):: Rate coefficient and determination of the enthalpy of formation [J].
Gierczak, T ;
Jiménez, E ;
Riffault, V ;
Burkholder, JB ;
Ravishankara, AR .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (04) :586-596
[9]   REACTIONS OF SF6- AND I- WITH ATMOSPHERIC TRACE GASES [J].
HUEY, LG ;
HANSON, DR ;
HOWARD, CJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (14) :5001-5008
[10]  
HUEY LG, 2000, ATMOS ENVIRON, V38, P5411