A new look at finite elements in time: a variational interpretation of Runge-Kutta methods

被引:50
作者
Bottasso, CL
机构
[1] Politecnico di Milano, Dipto. di Ingegneria Aerospaziale, 20133 Milano
关键词
finite elements in time; Runge-Kutta methods;
D O I
10.1016/S0168-9274(97)00072-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that integration schemes derived from some well known finite elements in time formulations are Runge-Kutta methods, and we discuss the implications of this finding. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:355 / 368
页数:14
相关论文
共 18 条
[1]   FINITE ELEMENTS IN TIME AND SPACE [J].
ARGYRIS, JH ;
SCHARPF, DW .
AERONAUTICAL JOURNAL, 1969, 73 (708) :1041-&
[2]   A GENERAL FRAMEWORK FOR INTERPRETING TIME FINITE-ELEMENT FORMULATIONS [J].
BORRI, M ;
BOTTASSO, C .
COMPUTATIONAL MECHANICS, 1993, 13 (03) :133-142
[3]   HELICOPTER ROTOR DYNAMICS BY FINITE-ELEMENT TIME APPROXIMATION [J].
BORRI, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (01) :149-160
[4]   DYNAMIC-RESPONSE OF MECHANICAL SYSTEMS BY A WEAK HAMILTONIAN-FORMULATION [J].
BORRI, M ;
GHIRINGHELLI, GL ;
LANZ, M ;
MANTEGAZZA, P ;
MERLINI, T .
COMPUTERS & STRUCTURES, 1985, 20 (1-3) :495-508
[5]  
BORRI M, 1991, COMPUT MECH, V7, P205
[6]  
Butcher J. C., 1976, BIT (Nordisk Tidskrift for Informationsbehandling), V16, P237, DOI 10.1007/BF01932265
[7]  
Butcher J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
[8]   FINITE-ELEMENT ANALYSIS OF TIME-DEPENDENT PHENOMENA [J].
FRIED, I .
AIAA JOURNAL, 1969, 7 (06) :1170-&
[9]  
Hairer E., 1991, SOLVING ORDINARY DIF
[10]  
Hairer E, 1987, SOLVING ORDINARY DIF, VI, DOI DOI 10.1007/978-3-662-12607-3