Algorithm refinement for stochastic partial differential equations. I. Linear diffusion

被引:51
作者
Alexander, FJ
Garcia, AL
Tartakovsky, DM
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
D O I
10.1006/jcph.2002.7149
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A hybrid particle/continuum algorithm is formulated for Fickian diffusion in the fluctuating hydrodynamic limit. The particles are taken as independent random walkers; the fluctuating diffusion equation is solved by finite differences with deterministic and white-noise fluxes. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass conservation. This methodology is an extension of Adaptive Mesh and Algorithm Refinement to stochastic partial differential equations. Results from a variety of numerical experiments are presented for both steady and time-dependent scenarios. In all cases the mean and variance of density are captured correctly by the stochastic hybrid algorithm. For a nonstochastic version (i.e., using only deterministic continuum fluxes) the mean density is correct, but the variance is reduced except in particle regions away from the interface. Extensions of the methodology to fluid mechanics applications are discussed. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:47 / 66
页数:20
相关论文
共 23 条
[1]   Spanning the length scales in dynamic simulation [J].
Abraham, FF ;
Broughton, JQ ;
Bernstein, N ;
Kaxiras, E .
COMPUTERS IN PHYSICS, 1998, 12 (06) :538-546
[2]   Highly discretized dynamics [J].
Alder, B .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 240 (1-2) :193-195
[3]   Coupling Boltzmann and Navier-Stokes equations by friction [J].
Bourgat, JF ;
LeTallec, P ;
Tidriri, MD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (02) :227-245
[4]  
Flekkoy EG, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.066302
[5]   Hybrid model for combined particle and continuum dynamics [J].
Flekkoy, EG ;
Wagner, G ;
Feder, J .
EUROPHYSICS LETTERS, 2000, 52 (03) :271-276
[6]   Adaptive mesh and algorithm refinement using direct simulation Monte Carlo [J].
Garcia, AL ;
Bell, JB ;
Crutchfield, WY ;
Alder, BJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (01) :134-155
[7]   NUMERICAL-INTEGRATION OF THE FLUCTUATING HYDRODYNAMIC EQUATIONS [J].
GARCIA, AL ;
MANSOUR, MM ;
LIE, GC ;
CLEMENTI, E .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (1-2) :209-228
[8]   Long-ranged correlations in bounded nonequilibrium fluids [J].
Garcia, AL ;
Sonnino, G ;
Mansour, MM .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (5-6) :1489-1492
[9]  
GARCIA AL, 2000, NUMERICAL METHODS PH
[10]  
Gardiner C. W., 1985, HDB STOCHASTIC METHO, V3