Polymorphism in the intermediates and products of amyloid assembly

被引:307
作者
Kodali, Ravindra
Wetzel, Ronald
机构
[1] Univ Pittsburgh, Sch Med, Dept Struct Biol, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Sch Med, Pittsburgh Inst Nuerodegenerat Dis, Pittsburgh, PA 15260 USA
关键词
D O I
10.1016/j.sbi.2007.01.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amyloid formation reactions exhibit two classes of polymorphisms: the metastable intermediates commonly observed during amyloid formation and the range of conformationally distinct mature fibrils often seen at the reaction endpoint. Although recent data suggest that spherical oligomers and protofibrils in most cases are not obligate intermediates of amyloid assembly, oligomeric states might sometimes serve as on-pathway intermediates. Mature amyloid polymorphs self-propagate as a result of the normally very high fidelity of amyloid elongation, giving rise to strain behavior and species barriers in prion phenomena. Oligomers, protofibrils and various polymorphic forms of mature amyloid fibrils seem to be distinguished by differences in atomic structure that give rise to differences in observed morphologies.
引用
收藏
页码:48 / 57
页数:10
相关论文
共 62 条
[1]   Polymorphism and ultrastructural organization of prion protein amyloid fibrils: An insight from high resolution atomic force microscopy [J].
Anderson, M ;
Bocharova, OV ;
Makarava, N ;
Breydo, L ;
Salnikov, VV ;
Baskakov, IV .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 358 (02) :580-596
[2]   Secondary structure of α-synuclein oligomers:: Characterization by Raman and atomic force microscopy [J].
Apetri, MM ;
Maiti, NC ;
Zagorski, MG ;
Carey, PR ;
Anderson, VE .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 355 (01) :63-71
[3]   Filaments of the Ure2p prion protein have a cross-β core structure [J].
Baxa, U ;
Cheng, NQ ;
Winkler, DC ;
Chiu, TK ;
Davies, DR ;
Sharma, D ;
Inouye, H ;
Kirschner, DA ;
Wickner, RB ;
Steven, AC .
JOURNAL OF STRUCTURAL BIOLOGY, 2005, 150 (02) :170-179
[4]   Amyloid β-protein:: Monomer structure and early aggregation states of Aβ42 and its Pro19 alloform [J].
Bernstein, SL ;
Wyttenbach, T ;
Baumketner, A ;
Shea, JE ;
Bitan, G ;
Teplow, DB ;
Bowers, MT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (07) :2075-2084
[5]   Oxidative metabolites accelerate Alzheimer's amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation [J].
Bieschke, J ;
Zhang, QH ;
Powers, ET ;
Lerner, RA ;
Kelly, JW .
BIOCHEMISTRY, 2005, 44 (13) :4977-4983
[6]   Rapid photochemical cross-linking - A new tool for studies of metastable, amyloidogenic protein assemblies [J].
Bitan, G ;
Teplow, DB .
ACCOUNTS OF CHEMICAL RESEARCH, 2004, 37 (06) :357-364
[7]   Efficient reversal of Alzheimer's disease fibril formation and elimination of neurotoxicity by a small molecule [J].
Blanchard, BJ ;
Chen, A ;
Rozeboom, LM ;
Stafford, KA ;
Weigele, P ;
Ingram, VM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (40) :14326-14332
[8]   The native-like conformation of Ure2p in fibrils assembled under physiologically relevant conditions switches to an amyloid-like conformation upon heat-treatment of the fibrils [J].
Bousset, L ;
Briki, F ;
Doucet, J ;
Melki, R .
JOURNAL OF STRUCTURAL BIOLOGY, 2003, 141 (02) :132-142
[9]   Kinetic analysis of beta-amyloid fibril elongation [J].
Cannon, MJ ;
Williams, AD ;
Wetzel, R ;
Myszka, DG .
ANALYTICAL BIOCHEMISTRY, 2004, 328 (01) :67-75
[10]  
Capaldi AP, 2001, NAT STRUCT BIOL, V8, P68