Metal binding to Saccharomyces cerevisiae ferrochelatase

被引:50
作者
Karlberg, T
Lecerof, D
Gora, M
Silvegren, G
Labbe-Bois, R
Hansson, M
Al-Karadaghi, S
机构
[1] Lund Univ, Dept Mol Biophys, Ctr Chem & Chem Engn, SE-22100 Lund, Sweden
[2] Lund Univ, Dept Biochem, Ctr Chem & Chem Engn, SE-22100 Lund, Sweden
[3] Polish Acad Sci, Inst Biochem & Biophys, PL-02106 Warsaw, Poland
[4] Univ Paris 07, Inst Jacques Monod, Lab Biochim Porphyrines, F-75251 Paris, France
关键词
D O I
10.1021/bi0260785
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ferrochelatase is the terminal enzyme in the heme biosynthetic pathway. It catalyzes the insertion of ferrous iron into protoporphyrin IX to produce protoheme IX. The crystal structures of ferrochelatase from Saccharomyces cerevisiae in free form, in complex with Co(II), a substrate metal ion, and in complex with two inhibitors, Cd(II) and Hg(I), are presented in this work. The enzyme is a homodimer, with clear asymmetry between the monomers with regard to the porphyrin binding cleft and the mode of metal binding. The Co(II) and Cd(II) complexes reveal the metal binding site which consists of the invariant amino acids H235, E314, and S275 and solvent molecules. The shortest distance to the metal reveals that amino acid H235 is the primary metal binding residue. A second site with bound Cd(II) was found close to the surface of the molecule, approximately 14 Angstrom from H235, with E97, H317, and E326 participating in metal coordination. It is suggested that this site corresponds to the magnesium binding site in Bacillus subtilis ferrochelatase. The latter site is also located at the surface of the molecule and thought to be involved in initial metal binding and regulation.
引用
收藏
页码:13499 / 13506
页数:8
相关论文
共 38 条
[1]   Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis [J].
Al-Karadaghi, S ;
Hansson, M ;
Nikonov, S ;
Jonsson, B ;
Hederstedt, L .
STRUCTURE, 1997, 5 (11) :1501-1510
[2]   ALSCRIPT - A TOOL TO FORMAT MULTIPLE SEQUENCE ALIGNMENTS [J].
BARTON, GJ .
PROTEIN ENGINEERING, 1993, 6 (01) :37-40
[3]   Alternative modes of substrate distortion in enzyme and antibody catalyzed ferrochelation reactions [J].
Blackwood, ME ;
Rush, TS ;
Romesberg, F ;
Schultz, PG ;
Spiro, TG .
BIOCHEMISTRY, 1998, 37 (03) :779-782
[4]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[5]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[6]  
CAMADRO JM, 1988, J BIOL CHEM, V263, P11675
[7]   RIBBONS 2 0 [J].
CARSON, M .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 :958-&
[8]   The crystallography beamline I711 at MAX II [J].
Cerenius, Y ;
Ståhl, K ;
Svensson, LA ;
Ursby, T ;
Oskarsson, Å ;
Albertsson, J ;
Liljas, A .
JOURNAL OF SYNCHROTRON RADIATION, 2000, 7 (07) :203-208
[9]   Ferrochelatase at the millennium: structures, mechanisms and [2Fe-2S] clusters [J].
Dailey, HA ;
Dailey, TA ;
Wu, CK ;
Medlock, AE ;
Wang, KF ;
Rose, JP ;
Wang, BC .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2000, 57 (13-14) :1909-1926
[10]  
DAILEY HA, 1987, ANN NY ACAD SCI, V514, P81