Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana

被引:329
作者
Locke, James C. W.
Kozma-Bognar, Laszlo
Gould, Peter D.
Feher, Balazs
Kevei, Eva
Nagy, Ferenc
Turner, Matthew S.
Hall, Anthony
Millar, Andrew J.
机构
[1] Univ Liverpool, Sch Biol Sci, Liverpool L69 3BX, Merseyside, England
[2] Univ Warwick, Dept Biol Sci, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[4] Univ Warwick, Interdisciplinary Programme Cellular Regulat, Coventry CV4 7AL, W Midlands, England
[5] Univ Edinburgh, Inst Mol Plant Sci, Edinburgh, Midlothian, Scotland
[6] Inst Plant Biol, Biol Res Ctr, Szeged, Hungary
基金
英国生物技术与生命科学研究理事会;
关键词
circadian rhythm; genetic network; photoperiod; mathematical model; systems biology;
D O I
10.1038/msb4100102
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Our computational model of the circadian clock comprised the feedback loop between LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and TIMING OF CAB EXPRESSION 1 (TOC1), and a predicted, interlocking feedback loop involving TOC1 and a hypothetical component Y. Experiments based on model predictions suggested GIGANTEA (GI) as a candidate for Y. We now extend the model to include a recently demonstrated feedback loop between the TOC1 homologues PSEUDO-RESPONSE REGULATOR 7 (PRR7), PRR9 and LHY and CCA1. This three-loop network explains the rhythmic phenotype of toc1 mutant alleles. Model predictions fit closely to new data on the gi;lhy;cca1 mutant, which confirm that GI is a major contributor to Y function. Analysis of the three-loop network suggests that the plant clock consists of morning and evening oscillators, coupled intracellularly, which may be analogous to coupled, morning and evening clock cells in Drosophila and the mouse.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis [J].
Alabadí, D ;
Yanovsky, MJ ;
Más, P ;
Harmer, SL ;
Kay, SA .
CURRENT BIOLOGY, 2002, 12 (09) :757-761
[2]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[3]   DNA microarray analyses of circadian timing: The genomic basis of biological time [J].
Duffield, GE .
JOURNAL OF NEUROENDOCRINOLOGY, 2003, 15 (10) :991-1002
[4]  
DUNLAP JC, 2003, CHRONOBIOLOGY BIOL T
[5]   Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock [J].
Farré, EM ;
Harmer, SL ;
Harmon, FG ;
Yanovsky, MJ ;
Kay, SA .
CURRENT BIOLOGY, 2005, 15 (01) :47-54
[6]   A detailed predictive model of the mammalian circadian clock [J].
Forger, DB ;
Peskin, CS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (25) :14806-14811
[7]   GIGANTEA:: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains [J].
Fowler, S ;
Lee, K ;
Onouchi, H ;
Samach, A ;
Richardson, K ;
Coupland, G ;
Putterill, J .
EMBO JOURNAL, 1999, 18 (17) :4679-4688
[8]   Interlocked feedback loops within the Drosophila circadian oscillator [J].
Glossop, NRJ ;
Lyons, LC ;
Hardin, PE .
SCIENCE, 1999, 286 (5440) :766-768
[9]   The molecular basis of temperature compensation in the Arabidopsis circadian clock [J].
Gould, PD ;
Locke, JCW ;
Larue, C ;
Southern, MM ;
Davis, SJ ;
Hanano, S ;
Moyle, R ;
Milich, R ;
Putterill, J ;
Millar, AJ ;
Hall, A .
PLANT CELL, 2006, 18 (05) :1177-1187
[10]   Distinct regulation of CAB and PHYB gene expression by similar circadian clocks [J].
Hall, A ;
Kozma-Bognár, L ;
Bastow, RM ;
Nagy, F ;
Millar, AJ .
PLANT JOURNAL, 2002, 32 (04) :529-537