Linear analysis of the Hall effect in protostellar disks

被引:290
作者
Balbus, SA
Terquem, C
机构
[1] Univ Virginia, Dept Astron, Virginia Inst Theoret Astrophys, Charlottesville, VA 22903 USA
[2] Inst Astrophys, F-75014 Paris, France
[3] Univ Paris 07, F-75251 Paris, France
基金
美国国家科学基金会;
关键词
accretion; accretion disks; instabilities; MHD; turbulence;
D O I
10.1086/320452
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The effects of Hall electromotive forces (HEMFs) on the linear stability of protostellar disks are examined. Earlier work on this topic focused on axial field and perturbation wavenumber geometry. Here we treat the problem more generally. Both axisymmetric and nonaxisymmetric cases are treated. Though seldom explicitly included in calculations, HEMFs appear to be important whenever Ohmic dissipation is. They allow for the appearance of electron whistler waves, and since these have right-hand polarization, a helicity factor is also introduced into the stability problem. This factor is the product of the components of the angular velocity and magnetic field along the perturbation wavenumber, and it is destabilizing when negative. An important finding of our more general calculation is that unless the field and angular velocity are exactly aligned, it is always possible to find destabilizing wavenumbers. HEMFs can destabilize any differential rotation law, even those with angular velocity increasing outward. Regardless of the sign of the angular velocity gradient, the maximum growth rate is always given in magnitude by the local Oort A value of the disk, as in the standard magnetorotational instability. The role of HEMFs may prove crucial to understanding how turbulence is maintained in the "low state" of eruptive disk systems.
引用
收藏
页码:235 / 247
页数:13
相关论文
共 20 条
[1]   Instability, turbulence, and enhanced transport in accretion disks [J].
Balbus, SA ;
Hawley, JF .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :1-53
[2]   A POWERFUL LOCAL SHEAR INSTABILITY IN WEAKLY MAGNETIZED DISKS .1. LINEAR-ANALYSIS [J].
BALBUS, SA ;
HAWLEY, JF .
ASTROPHYSICAL JOURNAL, 1991, 376 (01) :214-222
[3]   On the dynamical foundations of α disks [J].
Balbus, SA ;
Papaloizou, JCB .
ASTROPHYSICAL JOURNAL, 1999, 521 (02) :650-658
[4]   IS THE OORT A-VALUE A UNIVERSAL GROWTH-RATE LIMIT FOR ACCRETION DISK SHEAR INSTABILITIES [J].
BALBUS, SA ;
HAWLEY, JF .
ASTROPHYSICAL JOURNAL, 1992, 392 (02) :662-666
[5]   A POWERFUL LOCAL SHEAR INSTABILITY IN WEAKLY MAGNETIZED DISKS .4. NONAXISYMMETRIC PERTURBATIONS [J].
BALBUS, SA ;
HAWLEY, JF .
ASTROPHYSICAL JOURNAL, 1992, 400 (02) :610-621
[6]   LOCAL SHEAR INSTABILITIES IN WEAKLY IONIZED, WEAKLY MAGNETIZED DISKS [J].
BLAES, OM ;
BALBUS, SA .
ASTROPHYSICAL JOURNAL, 1994, 421 (01) :163-177
[7]   MAGNETOHYDRODYNAMIC SHOCK-WAVES IN MOLECULAR CLOUDS [J].
DRAINE, BT ;
ROBERGE, WG ;
DALGARNO, A .
ASTROPHYSICAL JOURNAL, 1983, 264 (02) :485-507
[8]   The effect of resistivity on the nonlinear stage of the magnetorotational instability in accretion disks [J].
Fleming, TP ;
Stone, JIM ;
Hawley, JF .
ASTROPHYSICAL JOURNAL, 2000, 530 (01) :464-477
[9]   On the origin of episodic accretion in dwarf novae [J].
Gammie, CF ;
Menou, K .
ASTROPHYSICAL JOURNAL, 1998, 492 (01) :L75-L78
[10]  
Goldreich P., 1965, MNRAS, V130, P125, DOI DOI 10.1093/MNRAS/130.2.125