Robust convex optimization

被引:1702
作者
Ben-Tal, A [1 ]
Nemirovski, A [1 ]
机构
[1] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
关键词
convex optimization; data uncertainty; robustness; linear programming; quadratic programming; semidefinite programming; geometric programming;
D O I
10.1287/moor.23.4.769
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study convex optimization problems for which the data is not specified exactly and it is only known to belong to a given uncertainty set U, yet the constraints must hold for all possible values of the data from U. The ensuing optimization problem is called robust optimization. In this paper we lay the foundation of robust convex optimization. In the main part of the paper we show that if U is an ellipsoidal uncertainty set, then for some of the most important generic convex optimization problems (linear programming, quadratically constrained programming, semidefinite programming and others) the corresponding robust convex program is either exactly, or approximately, a tractable problem which lends itself to efficient algorithms such as polynomial time interior point methods.
引用
收藏
页码:769 / 805
页数:37
相关论文
共 15 条
  • [1] Robust truss topology design via semidefinite programming
    Ben-Tal, A
    Nemirovski, A
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) : 991 - 1016
  • [2] BENTAL A, 1995, ROBUST CONVEX PROGRA
  • [3] BENTAL A, 1995, 695 ISR I TECHN OPT
  • [4] Boyd S, 1994, Linear Matrix Inequalities in System and Control Theory, V42, P434
  • [5] ELGHAOUI L, 1996, ROBUST SOLUTIONS LEA
  • [6] FALK JE, 1976, OPER RES, V34, P783
  • [7] Kouvelis, 1997, ROBUST DISCRETE OPTI, V14
  • [8] ROBUST OPTIMIZATION OF LARGE-SCALE SYSTEMS
    MULVEY, JM
    VANDERBEI, RJ
    ZENIOS, SA
    [J]. OPERATIONS RESEARCH, 1995, 43 (02) : 264 - 281
  • [9] NEMIROVSKI A, 1997, 397 TECHN ISR I TECH
  • [10] Nesterov Y., 1994, INTERIOR POINT POLYN