Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization

被引:86
作者
Yu, Shiwei [1 ,2 ,3 ]
Wei, Yi-Ming [1 ,3 ]
Fan, Jingli [1 ,3 ]
Zhang, Xian [1 ,3 ]
Wang, Ke [1 ,3 ]
机构
[1] Beijing Inst Technol, Sch Management & Econ, Beijing 100181, Peoples R China
[2] China Univ Geosci, Sch Econ & Management, Wuhan 430074, Peoples R China
[3] Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing 100181, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy C-means cluster; Carbon emission; Characteristics; Mitigation policy;
D O I
10.1016/j.apenergy.2011.11.068
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The better to explore the regional characteristics of inter-provincial CO2 emissions and the rational distribution of the reduction of emission intensity reduction in China, this paper proposes an improved PSO-FCM clustering algorithm. This method can obtain the optimal cluster number and membership grade values by utilizing the global capacity of Particle Swarm Optimization (PSO) on Fuzzy C-means (FCM). The clustering results of CO2 emissions indicate that the 30 provinces of China are divided into five clusters and each has its own significant characteristics. Compared with other clustering methods, the results of PSO-FCM are more explanatory. The most important indicators affecting regional emission characteristics are CO2 emission intensity and per capita emissions, whereas CO2 emission per unit of energy is not obvious in clustering. Furthermore, some policy recommendations on setting emission reduction targets according to the emission characteristics of different clusters are made. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:552 / 562
页数:11
相关论文
共 36 条
[1]  
Akins MJ, 2010, APPL ENERG, V87, P982
[2]  
[Anonymous], 2007, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
[3]  
[Anonymous], 1981, PATTERN RECOGN, DOI 10.1007/978-1-4757-0450-1_3
[4]   Wind energy conversion system regulation via LMI fuzzy pole cluster approach [J].
Besheer, Ahmad Hussien ;
Emara, Hassan M. ;
Aziz, Mamdouh Mohamed Abdel .
ELECTRIC POWER SYSTEMS RESEARCH, 2009, 79 (04) :531-538
[5]   Some new indexes of cluster validity [J].
Bezdek, JC ;
Pal, NR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1998, 28 (03) :301-315
[6]  
Clarke-sather A, 2011, ENERG POLICY, DOI [10.1016/j.enpol.2011.05.02, DOI 10.1016/J.ENPOL.2011.05.02]
[7]   Lifestyles, technology and CO2 emissions in China: A regional comparative analysis [J].
Feng, Kuishuang ;
Hubacek, Klaus ;
Guan, Dabo .
ECOLOGICAL ECONOMICS, 2009, 69 (01) :145-154
[8]  
Gao W, 2009, J LIAONING TU NAT SC, V28, P296
[9]   Optimal placement and sizing from standpoint of the investor of Photovoltaics Grid-Connected Systems using Binary Particle Swarm Optimization [J].
Gomez, M. ;
Lopez, A. ;
Jurado, F. .
APPLIED ENERGY, 2010, 87 (06) :1911-1918
[10]   A new convergence proof of fuzzy c-means [J].
Gröll, L ;
Jäkel, J .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (05) :717-720