On entropy rates of dynamical systems and Gaussian processes

被引:23
作者
Palus, M [1 ]
机构
[1] QUEENSLAND UNIV TECHNOL,SCH MATH,BRISBANE,QLD 4001,AUSTRALIA
关键词
D O I
10.1016/S0375-9601(97)00079-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The possibility of a relation between the Kolmogorov-Sinai entropy of a dynamical system and the entropy rate of a Gaussian process isospectral to time series generated by the dynamical system is numerically investigated using discrete and continuous chaotic dynamical systems. The results suggest that such a relation as a nonlinear one-to-one function may exist when the Kolmogorov-Sinai entropy varies smoothly with variations of the system parameters, but is broken in critical states near bifurcation points.
引用
收藏
页码:301 / 308
页数:8
相关论文
共 27 条
[1]  
ABRAHAM NB, 1989, MEASURES COMPLEXITY
[2]   PARAMETER-ESTIMATION OF RANDOM-FIELDS WITH LONG-RANGE DEPENDENCE [J].
ANH, VV ;
LUNNEY, KE .
MATHEMATICAL AND COMPUTER MODELLING, 1995, 21 (09) :67-77
[3]  
[Anonymous], 1988, DETERMINISTIC CHAOS
[4]  
[Anonymous], 1986, NUMERICAL RECIPES C
[5]  
CHIANG TP, 1987, ACTA SCI NATURALIUM, V1, P25
[6]  
Cornfeld I. P., 1982, Ergodic Theory
[7]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[8]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[9]   INFORMATION AND ENTROPY IN STRANGE ATTRACTORS [J].
FRASER, AM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (02) :245-262
[10]   ESTIMATION OF THE KOLMOGOROV-ENTROPY FROM A CHAOTIC SIGNAL [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1983, 28 (04) :2591-2593