Automated template-based PET region of interest analyses in the aging brain

被引:43
作者
Sun, Felice T.
Schriber, Roberta A.
Greenia, Joel M.
He, Jiawei
Gitcho, Amy
Jagust, William J.
机构
[1] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA
关键词
D O I
10.1016/j.neuroimage.2006.09.022
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The definition of regions of interest for PET data analysis poses a number of complex problems. While studies have shown that regions drawn on a template can be appropriate for extracting data for normal healthy subjects, it is unclear how these results can be applied to different populations. In this study, we focused on the aging population and examined how different parameters in the template data-extraction process may affect the accuracy of the results. We first present an automated method for extracting PET counts using a region-of-interest approach within a template framework. Then, we discuss two studies in which we measure the effects of varying specific parameters in this process. In study 1 we examined three parameters that may influence this process: choice of template, region, and threshold. In study 2 we focused on the hippocampus. We considered 6 different templates, and examined how well the subject-specific hippocampal masks overlapped with each other and with the template hippocampal masks after normalization. While the data in the older cohort are more variable than the normal population, the results suggest that using an appropriate template and selecting the correct parameters for the template-based ROI method can provide template-extracted counts that are highly correlated to counts extracted using subject-specific ROIs. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:608 / 617
页数:10
相关论文
共 21 条
[1]   Multimodal image coregistration and partitioning - A unified framework [J].
Ashburner, J ;
Friston, K .
NEUROIMAGE, 1997, 6 (03) :209-217
[2]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[3]   Quantitative comparison of four brain extraction algorithms [J].
Boesen, K ;
Rehm, K ;
Schaper, K ;
Stoltzner, S ;
Woods, R ;
Lüders, E ;
Rottenberg, D .
NEUROIMAGE, 2004, 22 (03) :1255-1261
[4]   SPECIFICATION AND SELECTION OF REGIONS OF INTEREST (ROIS) IN A COMPUTERIZED BRAIN ATLAS [J].
BOHM, C ;
GREITZ, T ;
SEITZ, R ;
ERIKSSON, L .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1991, 11 (02) :A64-A68
[5]   The problem of functional localization in the human brain [J].
Brett, M ;
Johnsrude, IS ;
Owen, AM .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (03) :243-249
[6]  
Cointepas Y, 2001, NEUROIMAGE, V13, pS98
[7]   Automatic 3-D model-based neuroanatomical segmentation [J].
Collins, DL ;
Holmes, CJ ;
Peters, TM ;
Evans, AC .
HUMAN BRAIN MAPPING, 1995, 3 (03) :190-208
[8]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173
[9]   Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET) [J].
de Leon, MJ ;
Convit, A ;
Wolf, OT ;
Tarshish, CY ;
DeSanti, S ;
Rusinek, H ;
Tsui, W ;
Kandil, E ;
Scherer, AJ ;
Roche, A ;
Imossi, A ;
Thorn, E ;
Bobinski, M ;
Caraos, C ;
Lesbre, P ;
Schlyer, D ;
Poirier, J ;
Reisberg, B ;
Fowler, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) :10966-10971
[10]  
Friston K. J., 1994, Human Brain Mapping, V2, P189, DOI DOI 10.1002/HBM.460020402