Protein folding simulations with genetic algorithms and a detailed molecular description

被引:91
作者
Pedersen, JT [1 ]
Moult, J [1 ]
机构
[1] UNIV MARYLAND, INST BIOTECHNOL, CTR ADV RES BIOTECHNOL, ROCKVILLE, MD 20850 USA
基金
美国国家卫生研究院;
关键词
genetic algorithms; Monte Carlo; protein folding; global energy function;
D O I
10.1006/jmbi.1997.1010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have explored the application of genetic algorithms (GA) to the determination of protein structure from sequence, using a full atom representation. A free energy function with point charge electrostatics and an area based solvation model is used. The method is found to be superior to previously investigated Monte Carlo algorithms. For selected fragments, up to 14 residues long, the lowest free energy structures produced by the GA are similar in conformation to the corresponding experimental structures in most cases. There are three main conclusions from these results. First, the genetic algorithm is an effective method for searching amongst the compact conformations of a polypeptide chain. Second, the free energy function is generally able to select nativelike conformations. However, some deficiencies are identified, and further development is proposed. Third, the selection of native-like conformations for some protein fragments establishes that in these cases the conformation observed in the full protein structure is largely context independent. The implications for the nature of protein folding pathways are discussed. (C) 1997 Academic Press Limited.
引用
收藏
页码:240 / 259
页数:20
相关论文
共 68 条
[1]   BIASED PROBABILITY MONTE-CARLO CONFORMATIONAL SEARCHES AND ELECTROSTATIC CALCULATIONS FOR PEPTIDES AND PROTEINS [J].
ABAGYAN, R ;
TOTROV, M .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 235 (03) :983-1002
[2]  
Allen M. P, 1989, Computer Simulation of Liquids
[3]   MOLECULAR-DYNAMICS SIMULATIONS OF PROTEIN UNFOLDING AND LIMITED REFOLDING - CHARACTERIZATION OF PARTIALLY UNFOLDED STATES OF UBIQUITIN IN 60-PERCENT METHANOL AND IN WATER [J].
ALONSO, DOV ;
DAGGETT, V .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (03) :501-520
[4]   PH-INDUCED DENATURATION OF PROTEINS - A SINGLE SALT BRIDGE CONTRIBUTES 3-5 KCAL MOL TO THE FREE-ENERGY OF FOLDING OF T4-LYSOZYME [J].
ANDERSON, DE ;
BECKTEL, WJ ;
DAHLQUIST, FW .
BIOCHEMISTRY, 1990, 29 (09) :2403-2408
[5]   A MOLECULAR-DYNAMICS STUDY OF THE C-TERMINAL FRAGMENT OF THE L7/L12 RIBOSOMAL-PROTEIN - SECONDARY STRUCTURE MOTION IN A 150 PICOSECOND TRAJECTORY [J].
AQVIST, J ;
VANGUNSTEREN, WF ;
LEIJONMARCK, M ;
TAPIA, O .
JOURNAL OF MOLECULAR BIOLOGY, 1985, 183 (03) :461-477
[6]   USE OF A POTENTIAL OF MEAN FORCE TO ANALYZE FREE-ENERGY CONTRIBUTIONS IN PROTEIN FOLDING [J].
AVBELJ, F .
BIOCHEMISTRY, 1992, 31 (27) :6290-6297
[7]   ROLE OF ELECTROSTATIC SCREENING IN DETERMINING PROTEIN MAIN-CHAIN CONFORMATIONAL PREFERENCES [J].
AVBELJ, F ;
MOULT, J .
BIOCHEMISTRY, 1995, 34 (03) :755-764
[8]   DETERMINATION OF THE CONFORMATION OF FOLDING INITIATION SITES IN PROTEINS BY COMPUTER-SIMULATION [J].
AVBELJ, F ;
MOULT, J .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1995, 23 (02) :129-141
[9]   CRYSTAL-STRUCTURE OF A BARNASE-D(GPC) COMPLEX AT 1.9-A RESOLUTION [J].
BAUDET, S ;
JANIN, J .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 219 (01) :123-132
[10]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542