The existence of Burnett coefficients in the periodic Lorentz gas

被引:16
作者
Chernov, NI [1 ]
Dettmann, CP
机构
[1] Univ Alabama, Dept Math, Birmingham, AL 35294 USA
[2] Rockefeller Univ, Ctr Studies Phys & Biol, New York, NY 10021 USA
来源
PHYSICA A | 2000年 / 279卷 / 1-4期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0378-4371(99)00512-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The linear super-Burnett coefficient gives corrections to the diffusion equation in the form of higher derivatives of the density. Like the diffusion coefficient, it can be expressed in terms of integrals of correlation functions, but involving four different times. The power-law decay of correlations in real gases (with many moving particles) and the random Lorentz gas (with one moving particle and fixed scatterers) are expected to cause the super-Burnett coefficient to diverge in most cases. Here, we show that the expression for the super-Burnett coefficient of the periodic Lorentz gas converges as a result of exponential decay of correlations and a nontrivial cancellation of divergent contributions. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 12 条
[1]  
[Anonymous], P LOND MATH SOC
[2]   STATISTICAL PROPERTIES OF 2-DIMENSIONAL HYPERBOLIC BILLIARDS [J].
BUNIMOVICH, LA ;
SINAI, YG ;
CHERNOV, NI .
RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (04) :47-106
[3]   Decay of correlations and dispersing billiards [J].
Chernov, N .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (3-4) :513-556
[4]   LIMIT-THEOREMS AND MARKOV APPROXIMATIONS FOR CHAOTIC DYNAMICAL-SYSTEMS [J].
CHERNOV, NI .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 101 (03) :321-362
[5]   STATISTICAL PROPERTIES OF THE PERIODIC LORENTZ GAS - MULTIDIMENSIONAL CASE [J].
CHERNOV, NI .
JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (1-2) :11-53
[6]   ON DENSITY EXPANSION OF PAIR DISTRIBUTION FUNCTION FOR A DENSE GAS NOT IN EQUILIBRIUM [J].
DORFMAN, JR ;
COHEN, EGD .
PHYSICS LETTERS, 1965, 16 (02) :124-&
[7]   LONG TIME BEHAVIOUR OF VELOCITY AUTO-CORRELATION FUNCTION IN A LORENTZ GAS [J].
ERNST, MH ;
WEYLAND, A .
PHYSICS LETTERS A, 1971, A 34 (01) :39-&
[8]  
GASPARD P, 1998, CHAOS SCATTERING STA, pCH7
[9]   KINETIC EQUATIONS AND DENSITY EXPANSIONS - EXACTLY SOLVABLE 1-DIMENSIONAL SYSTEM [J].
LEBOWITZ, JL ;
PERCUS, JK .
PHYSICAL REVIEW, 1967, 155 (01) :122-&
[10]   TRANSPORT-PROPERTIES OF STOCHASTIC LORENTZ MODELS [J].
VANBEIJEREN, H .
REVIEWS OF MODERN PHYSICS, 1982, 54 (01) :195-234