In vivo protein tyrosine nitration in Arabidopsis thaliana

被引:148
作者
Lozano-Juste, Jorge [1 ]
Colom-Moreno, Rosa [1 ]
Leon, Jose [1 ]
机构
[1] Univ Politecn Valencia, CSIC, Inst Biol Mol & Celular Plantas, Valencia 46022, Spain
关键词
AminoY; Arabidopsis; nitric oxide; nitrotyrosine; nitroY; post-translational modification; protein nitration; PLANT-PATHOGEN INTERACTIONS; S-NITROSYLATED PROTEINS; NITRIC-OXIDE; MASS-SPECTROMETRY; METHIONINE SYNTHASE; PROTEOMIC ANALYSIS; REDOX REGULATION; IDENTIFICATION; PEROXYNITRITE; NITROTYROSINE;
D O I
10.1093/jxb/err042
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Nitration of tyrosine (Y) residues of proteins is a low abundant post-translational modification that modulates protein function or fate in animal systems. However, very little is known about the in vivo prevalence of this modification and its corresponding targets in plants. Immunoprecipitation, based on an anti-3-nitroY antibody, was performed to pull-down potential in vivo targets of Y nitration in the Arabidopsis thaliana proteome. Further shotgun liquid chromatography-mass spectrometry (LC-MS/MS) proteomic analysis of the immunoprecipitated proteins allowed the identification of 127 proteins. Around 35% of them corresponded to homologues of proteins that have been previously reported to be Y nitrated in other non-plant organisms. Some of the putative in vivo Y-nitrated proteins were further confirmed by western blot with specific antibodies. Furthermore, MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) analysis of protein spots, separated by two-dimensional electrophoresis from immunoprecipitated proteins, led to the identification of seven nitrated peptides corresponding to six different proteins. However, in vivo nitration sites among putative targets could not be identified by MS/MS. Nevertheless, an MS/MS spectrum with 3-aminoY318 instead of the expected 3-nitroY was found for cytosolic glyceraldehyde-3-phosphate dehydrogenase. Reduction of nitroY to aminoY during MS-based proteomic analysis together with the in vivo low abundance of these modifications made the identification of nitration sites difficult. In turn, in vitro nitration of methionine synthase, which was also found in the shotgun proteomic screening, allowed unequivocal identification of a nitration site at Y287.
引用
收藏
页码:3501 / 3517
页数:17
相关论文
共 63 条
[1]   Protein Tyrosine Nitration: Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins [J].
Abello, Nicolas ;
Kerstjens, Huib A. M. ;
Postma, Dirkje S. ;
Bischoff, Rainer .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (07) :3222-3238
[2]   Reorganizing the protein space at the Universal Protein Resource (UniProt) [J].
Apweiler, Rolf ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alam-Faruque, Yasmin ;
Antunes, Ricardo ;
Casanova, Elisabet Barrera ;
Bely, Benoit ;
Bingley, Mark ;
Bower, Lawrence ;
Bursteinas, Borisas ;
Chan, Wei Mun ;
Chavali, Gayatri ;
Da Silva, Alan ;
Dimmer, Emily ;
Eberhardt, Ruth ;
Fazzini, Francesco ;
Fedotov, Alexander ;
Garavelli, John ;
Castro, Leyla Garcia ;
Gardner, Michael ;
Hieta, Reija ;
Huntley, Rachael ;
Jacobsen, Julius ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
Orchard, Sandra ;
Patient, Samuel ;
Pichler, Klemens ;
Poggioli, Diego ;
Pontikos, Nikolas ;
Pundir, Sangya ;
Rosanoff, Steven ;
Sawford, Tony ;
Sehra, Harminder ;
Turner, Edward ;
Wardell, Tony ;
Watkins, Xavier ;
Corbett, Matt ;
Donnelly, Mike ;
van Rensburg, Pieter ;
Goujon, Mickael ;
McWilliam, Hamish ;
Lopez, Rodrigo ;
Xenarios, Ioannis ;
Bougueleret, Lydie ;
Bridge, Alan ;
Poux, Sylvain ;
Redaschi, Nicole .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D71-D75
[3]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[4]   Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves [J].
Bechtold, Ulrike ;
Rabbani, Naila ;
Mullineaux, Philip M. ;
Thornalley, Paul J. .
PLANT JOURNAL, 2009, 59 (04) :661-671
[5]   Nitric oxide reduces seed dormancy in Arabidopsis [J].
Bethke, PC ;
Libourel, IGL ;
Jones, RL .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (03) :517-526
[6]   Apoplastic synthesis of nitric oxide by plant tissues [J].
Bethke, PC ;
Badger, MR ;
Jones, RL .
PLANT CELL, 2004, 16 (02) :332-341
[7]   A METHOD TO IDENTIFY PROTEIN SEQUENCES THAT FOLD INTO A KNOWN 3-DIMENSIONAL STRUCTURE [J].
BOWIE, JU ;
LUTHY, R ;
EISENBERG, D .
SCIENCE, 1991, 253 (5016) :164-170
[8]  
Brouwer M, 1996, BLOOD, V88, P1857
[9]   Responses to peroxynitrite in yeast: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a sensitive intracellular target for nitration and enhancement of chaperone expression and ubiquitination [J].
Buchczyk, DP ;
Briviba, K ;
Harti, FU ;
Sies, H .
BIOLOGICAL CHEMISTRY, 2000, 381 (02) :121-126
[10]   Protein nitration during defense response in Arabidopsis thaliana [J].
Cecconi, Daniela ;
Orzetti, Stefano ;
Vandelle, Elodie ;
Rinalducci, Sara ;
Zolla, Lello ;
Delledonne, Massimo .
ELECTROPHORESIS, 2009, 30 (14) :2460-2468