New elementary particles as a possible product of a disintegrating symplictic vacuum

被引:22
作者
El Naschie, MS
机构
[1] Free Univ Brussels, Solvay Inst Phys & Chem, B-1050 Brussels, Belgium
[2] Cairo Univ, Fac Sci, Cairo, Egypt
关键词
D O I
10.1016/j.chaos.2003.10.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The work connects instantons to the symplictic geometry of the VAK of vacuum fluctuation as envisaged by epsilon((infinity)) theory. Subsequently the relation between the Peccei-Quinn symmetry breaking and some experimental evidence for new elementary particles with an expectation mass of 26.18 and 42.36 MeV are discussed in connection with the super symmetric unification of all fundamental interactions. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:905 / 913
页数:9
相关论文
共 16 条
[1]  
ARNAND BM, 1953, P ROY SOC LOND A MAT, V220, P183
[2]   Links between physics and set theory [J].
Augenstein, BW .
CHAOS SOLITONS & FRACTALS, 1996, 7 (11) :1761-1798
[3]   POSSIBLE OBSERVATION OF LIGHT NEUTRAL BOSONS IN NUCLEAR-EMULSIONS [J].
DEBOER, FWN ;
VANDANTZIG, R .
PHYSICAL REVIEW LETTERS, 1988, 61 (11) :1274-1277
[4]   A review of E infinity theory and the mass spectrum of high energy particle physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :209-236
[5]   Quantum gravity, Clifford algebras, fuzzy set theory and the fundamental constants of nature [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 20 (03) :437-450
[6]   On the possibility of two new "elementary" particles with mass equal to m(k)=1.80339 MeV and m((α)over-bargs)=26.180339 MeV [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 20 (03) :649-654
[7]   Anomalous positron peaks and experimental verification of ε(∞) super symmetric grand unification [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 20 (03) :455-458
[8]   PRODUCTION OF A NEW LIGHT NEUTRAL BOSON IN HIGH-ENERGY COLLISIONS [J].
ELNADI, M ;
BADAWY, OE .
PHYSICAL REVIEW LETTERS, 1988, 61 (11) :1271-1273
[9]  
GREENBERG JS, 1982, PHYS TODAY
[10]  
McDuff D., 2017, Introduction to symplectic topology, Vthird edition