Corrections to coupled mode theory for deep gratings

被引:38
作者
Iizuka, T [1 ]
de Sterke, CM
机构
[1] Australian Natl Univ, Res Sch Phys Sci & Engn, Ctr Opt Sci, Canberra, ACT 0200, Australia
[2] Ehime Univ, Fac Sci, Dept Phys, Matsuyama, Ehime 7908577, Japan
[3] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[4] Univ Sydney, Opt Fiber Technol Ctr, Sydney, NSW 2006, Australia
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 04期
关键词
D O I
10.1103/PhysRevE.61.4491
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We generalize the standard coupled mode equations describing interactions between forward and backward propagating waves in a nonlinear optical Bragg grating. Including the lowest order corrections of the grating depth, we obtain a Hamiltonian system that can be regarded as an extension of the usual coupled mode equations for shallow gratings. The results are consistent with existing results based on a Bloch wave expansion. We also obtain exact traveling solitary wave solutions, that can be regarded as a generalized gap soliton, modified by the grating's depth.
引用
收藏
页码:4491 / 4499
页数:9
相关论文
共 21 条
[1]   SELF-INDUCED TRANSPARENCY SOLITONS IN NONLINEAR REFRACTIVE PERIODIC MEDIA [J].
ACEVES, AB ;
WABNITZ, S .
PHYSICS LETTERS A, 1989, 141 (1-2) :37-42
[2]  
Agrawal G, 1989, Nonlinear Fiber Optics
[3]   Coupled-mode equations for quadratically nonlinear deep gratings [J].
Arraf, A ;
de Sterke, CM .
PHYSICAL REVIEW E, 1998, 58 (06) :7951-7958
[4]   Vibrations and oscillatory instabilities of gap solitons [J].
Barashenkov, IV ;
Pelinovsky, DE ;
Zemlyanaya, EV .
PHYSICAL REVIEW LETTERS, 1998, 80 (23) :5117-5120
[5]   Theory of grating superstructures [J].
Broderick, NGR ;
deSterke, CM .
PHYSICAL REVIEW E, 1997, 55 (03) :3634-3646
[6]   GAP SOLITONS AND THE NONLINEAR OPTICAL-RESPONSE OF SUPERLATTICES [J].
CHEN, W ;
MILLS, DL .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :160-163
[7]   SLOW BRAGG SOLITONS IN NONLINEAR PERIODIC STRUCTURES [J].
CHRISTODOULIDES, DN ;
JOSEPH, RI .
PHYSICAL REVIEW LETTERS, 1989, 62 (15) :1746-1749
[8]   Bloch function approach for parametric gap solitons [J].
Conti, C ;
Trillo, S ;
Assanto, G .
OPTICS LETTERS, 1997, 22 (07) :445-447
[9]   ENVELOPE-FUNCTION APPROACH FOR THE ELECTRODYNAMICS OF NONLINEAR PERIODIC STRUCTURES [J].
DESTERKE, CM ;
SIPE, JE .
PHYSICAL REVIEW A, 1988, 38 (10) :5149-5165
[10]   Coupled-mode theory for light propagation through deep nonlinear gratings [J].
deSterke, CM ;
Salinas, DG ;
Sipe, JE .
PHYSICAL REVIEW E, 1996, 54 (02) :1969-1989