Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

被引:63
作者
Dixit, Anshuman [1 ,2 ]
Verkhivker, Gennady M. [1 ,2 ,3 ,4 ]
机构
[1] Univ Kansas, Grad Program Bioinformat, Lawrence, KS 66045 USA
[2] Univ Kansas, Ctr Bioinformat, Lawrence, KS 66045 USA
[3] Univ Kansas, Sch Pharm, Dept Pharmaceut Chem, Lawrence, KS 66045 USA
[4] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
关键词
GROWTH-FACTOR RECEPTOR; CELL LUNG-CANCER; PROTEIN-KINASES; C-SRC; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; DRUG-RESISTANCE; CONFORMATIONAL TRANSITIONS; INHIBITOR COMPLEXES; MOLECULAR-DYNAMICS;
D O I
10.1371/journal.pcbi.1000487
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases.
引用
收藏
页数:22
相关论文
共 112 条
[1]   Large-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism [J].
Arora, Karunesh ;
Brooks, Charles L., III .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18496-18501
[2]   A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase [J].
Atwell, S ;
Adams, JM ;
Badger, J ;
Buchanan, MD ;
Feil, IK ;
Froning, KJ ;
Gao, X ;
Hendle, J ;
Keegan, K ;
Leon, BC ;
Müller-Dieckmann, HJ ;
Nienaber, VL ;
Noland, BW ;
Post, K ;
Rajashankar, KR ;
Ramos, A ;
Russell, M ;
Burley, SK ;
Buchanan, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (53) :55827-55832
[3]   Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL [J].
Azam, M ;
Latek, RR ;
Daley, GQ .
CELL, 2003, 112 (06) :831-843
[4]   Activation of tyrosine kinases by mutation of the gatekeeper threonine [J].
Azam, Mohammad ;
Seeliger, Markus A. ;
Gray, Nathanael S. ;
Kuriyan, John ;
Daley, George Q. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (10) :1109-1118
[5]   Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck [J].
Banavali, Nilesh K. ;
Roux, Benoit .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 67 (04) :1096-1112
[6]   Flexibility and charge asymmetry in the activation loop of Src tyrosine kinases [J].
Banavali, Nilesh K. ;
Roux, Benoit .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2009, 74 (02) :378-389
[7]   Generalized born models of macromolecular solvation effects [J].
Bashford, D ;
Case, DA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :129-152
[8]   Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR [J].
Bell, DW ;
Gore, I ;
Okimoto, RA ;
Godin-Heymann, N ;
Sordella, R ;
Mulloy, R ;
Sharma, SV ;
Brannigan, BW ;
Mohapatra, G ;
Settleman, J ;
Haber, DA .
NATURE GENETICS, 2005, 37 (12) :1315-1316
[9]   Protein Conformational Transitions: The Closure Mechanism of a Kinase Explored by Atomistic Simulations [J].
Berteotti, Anna ;
Cavalli, Andrea ;
Branduardi, Davide ;
Gervasio, Francesco Luigi ;
Recanatini, Maurizio ;
Parrinello, Michele .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (01) :244-250
[10]   AVOIDING SINGULARITIES AND NUMERICAL INSTABILITIES IN FREE-ENERGY CALCULATIONS BASED ON MOLECULAR SIMULATIONS [J].
BEUTLER, TC ;
MARK, AE ;
VANSCHAIK, RC ;
GERBER, PR ;
VANGUNSTEREN, WF .
CHEMICAL PHYSICS LETTERS, 1994, 222 (06) :529-539