Bidirectional modulation of transmitter release by calcium channel/syntaxin interactions in vivo

被引:25
作者
Keith, Ryan K.
Poage, Robert E.
Yokoyama, Charles T.
Catterall, William A.
Meriney, Stephen D.
机构
[1] Univ Pittsburgh, Dept Neurosci, Pittsburgh, PA 15260 USA
[2] Univ Washington, Dept Pharmacol, Seattle, WA 98195 USA
[3] Univ Washington, Grad Program Neurobiol & Behav, Seattle, WA 98195 USA
关键词
calcium; syntaxin; synprint; neuromuscular junction; Xenopus; facilitation;
D O I
10.1523/JNEUROSCI.4213-06.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Protein interactions within the active zone of the nerve terminal are critical for regulation of transmitter release. The SNARE protein syntaxin 1A, primarily known for important interactions that control vesicle fusion, also interacts with presynaptic voltage-gated calcium channels. Based on recordings of calcium channel function in vitro, it has been hypothesized that syntaxin 1A-calcium channel interactions could alter calcium channel function at synapses. However, results at synapses in vitro suggest two potentially opposing roles: enhancement of neurotransmitter release by positioning docked vesicles near calcium channels and inhibition of calcium channel function by interaction with SNARE proteins. We have examined the possibility that these two effects of syntaxin can occur at synapses by studying the effects on transmitter release of manipulating syntaxin 1A-calcium channel interactions at Xenopus tadpole tail neuromuscular synapses in vivo. Introduction of synprint peptides, which competitively perturb syntaxin 1A-calcium channel interactions, decreased quantal content at these synapses and increased paired-pulse and tetanic facilitation. In contrast, injecting mRNA for mutant (A240V, V244A) syntaxin 1A, which reduces calcium channel modulation but not binding in vitro, increased quantal content and decreased paired-pulse and tetanic facilitation. Injection of wild-type syntaxin 1A mRNA had no effect. The opposing effects of synprint peptides and mutant syntaxin 1A provide in vivo support for the hypothesis that these interactions serve both to colocalize calcium channels with the release machinery and to modulate the functional state of the calcium channel. As such, these two effects of syntaxin on calcium channels modulate transmitter release in a bidirectional manner.
引用
收藏
页码:265 / 269
页数:5
相关论文
共 40 条
[1]   Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism [J].
Atlas, D .
JOURNAL OF NEUROCHEMISTRY, 2001, 77 (04) :972-985
[2]   SYNTAXIN - A SYNAPTIC PROTEIN IMPLICATED IN DOCKING OF SYNAPTIC VESICLES AT PRESYNAPTIC ACTIVE ZONES [J].
BENNETT, MK ;
CALAKOS, N ;
SCHELLER, RH .
SCIENCE, 1992, 257 (5067) :255-259
[3]   Syntaxin modulation of calcium channels in cortical synaptosomes as revealed by botulinum toxin C1 [J].
Bergsman, JB ;
Tsien, RW .
JOURNAL OF NEUROSCIENCE, 2000, 20 (12) :4368-4378
[4]   Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating [J].
Bezprozvanny, I ;
Zhong, PY ;
Scheller, RH ;
Tsien, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13943-13948
[5]   FUNCTIONAL IMPACT OF SYNTAXIN ON GATING OF N-TYPE AND Q-TYPE CALCIUM CHANNELS [J].
BEZPROZVANNY, I ;
SCHELLER, RH ;
TSIEN, RW .
NATURE, 1995, 378 (6557) :623-626
[6]   Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release [J].
Catterall, WA .
MOLECULAR AND FUNCTIONAL DIVERSITY OF ION CHANNELS AND RECEPTORS, 1999, 868 :144-159
[7]   Syntaxin modulation of slow inactivation of N-type calcium channels [J].
Degtiar, VE ;
Scheller, RH ;
Tsien, RW .
JOURNAL OF NEUROSCIENCE, 2000, 20 (12) :4355-4367
[8]   QUANTAL COMPONENTS OF THE END-PLATE POTENTIAL [J].
DELCASTILLO, J ;
KATZ, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1954, 124 (03) :560-573
[9]   AN ANALYSIS OF THE END-PLATE POTENTIAL RECORDED WITH AN INTRA-CELLULAR ELECTRODE [J].
FATT, P ;
KATZ, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1951, 115 (03) :320-370
[10]   Targeted mutations in the syntaxin H3 domain specifically disrupt SNARE complex function in synaptic transmission [J].
Fergestad, T ;
Wu, MN ;
Schulze, KL ;
Lloyd, TE ;
Bellen, HJ ;
Broadie, K .
JOURNAL OF NEUROSCIENCE, 2001, 21 (23) :9142-9150