The last phase of the reprotonation switch in bacteriorhodopsin: The transition between the M-type and the N-type protein conformation depends on hydration

被引:58
作者
Kamikubo, H
Oka, T
Imamoto, Y
Tokunaga, F
Lanyi, JK
Kataoka, M
机构
[1] OSAKA UNIV,GRAD SCH SCI,DEPT EARTH & SPACE SCI,TOYONAKA,OSAKA 560,JAPAN
[2] OSAKA UNIV,GRAD SCH SCI,DEPT PHYS,TOYONAKA,OSAKA 560,JAPAN
[3] UNIV CALIF IRVINE,DEPT PHYSIOL & BIOPHYS,IRVINE,CA 92697
关键词
D O I
10.1021/bi9712302
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In order to elucidate the mechanism of the reprotonation switch of bacteriorhodopsin, the protein conformation of the M intermediate of the D96N mutant was examined at various hydration conditions by X-ray diffraction and FTIR spectroscopy. We observed two distinct protein conformations at different levels of hydration. One is like in the N photointermediate, although in this case with an unprotonated Schiff base. It is stabilized in highly hydrated samples. The other is a protein conformation identical to that in the normal M intermediate of wild-type bacteriorhodopsin, which is stabilized in partially dehydrated samples. The hydration dependence of the structural transition between the M-type and the N-type conformations suggests that there is a change in the binding of water at the cytoplasmic surface. Thus, more water molecules bind in the N-type structure than in the M-type. This is consistent with the idea that the conformational change from the M-type to the N-type corresponds to the opening of the proton channel to the cytoplasmic surface by tilt of the cytoplasmic end of helix F, and that this is required for proton transfer from Asp-96 to the retinal Schiff base.
引用
收藏
页码:12282 / 12287
页数:6
相关论文
共 33 条
[1]   DESIGN OF A SMALL-ANGLE X-RAY DIFFRACTOMETER USING SYNCHROTRON RADIATION AT THE PHOTON-FACTORY [J].
AMEMIYA, Y ;
WAKABAYASHI, K ;
HAMANAKA, T ;
WAKABAYASHI, T ;
MATSUSHITA, T ;
HASHIZUME, H .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, 1983, 208 (1-3) :471-477
[2]   Titration of aspartate-85 in bacteriorhodopsin: What it says about chromophore isomerization and proton release [J].
Balashov, SP ;
Imasheva, ES ;
Govindjee, R ;
Ebrey, TG .
BIOPHYSICAL JOURNAL, 1996, 70 (01) :473-481
[3]   A local electrostatic change is the cause of the large-scale protein conformation shift in bacteriorhodopsin [J].
Brown, LS ;
Kamikubo, H ;
Zimanyi, L ;
Kataoka, M ;
Tokunaga, F ;
Verdegem, P ;
Lugtenburg, J ;
Lanyi, JK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5040-5044
[4]   Functional significance of a protein conformation change at the cytoplasmic end of helix F during the bacteriorhodopsin photocycle [J].
Brown, LS ;
Varo, G ;
Needleman, R ;
Lanyi, JK .
BIOPHYSICAL JOURNAL, 1995, 69 (05) :2103-2111
[5]   GLUTAMIC-ACID-204 IS THE TERMINAL PROTON RELEASE GROUP AT THE EXTRACELLULAR SURFACE OF BACTERIORHODOPSIN [J].
BROWN, LS ;
SASAKI, J ;
KANDORI, H ;
MAEDA, A ;
NEEDLEMAN, R ;
LANYI, JK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (45) :27122-27126
[6]   ASPARTIC ACID-96 AND ASPARTIC ACID-85 PLAY A CENTRAL ROLE IN THE FUNCTION OF BACTERIORHODOPSIN AS A PROTON PUMP [J].
BUTT, HJ ;
FENDLER, K ;
BAMBERG, E ;
TITTOR, J ;
OESTERHELT, D .
EMBO JOURNAL, 1989, 8 (06) :1657-1663
[7]   WATER IS REQUIRED FOR PROTON-TRANSFER FROM ASPARTATE-96 TO THE BACTERIORHODOPSIN SCHIFF-BASE [J].
CAO, Y ;
VARO, G ;
CHANG, M ;
NI, BF ;
NEEDLEMAN, R ;
LANYI, JK .
BIOCHEMISTRY, 1991, 30 (45) :10972-10979
[8]   STRUCTURAL-CHANGES IN BACTERIORHODOPSIN DURING PROTON TRANSLOCATION REVEALED BY NEUTRON-DIFFRACTION [J].
DENCHER, NA ;
DRESSELHAUS, D ;
ZACCAI, G ;
BULDT, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (20) :7876-7879
[9]   THERMAL MOTIONS AND FUNCTION OF BACTERIORHODOPSIN IN PURPLE MEMBRANES - EFFECTS OF TEMPERATURE AND HYDRATION STUDIED BY NEUTRON-SCATTERING [J].
FERRAND, M ;
DIANOUX, AJ ;
PETRY, W ;
ZACCAI, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (20) :9668-9672
[10]  
GLAESER RM, 1985, BIOPHYS J, V50, P913