Adaptive quadrature - Revisited

被引:271
作者
Gander, W [1 ]
Gautschi, W [1 ]
机构
[1] ETH Zurich, Inst Wissensch Rechnen, CH-8092 Zurich, Switzerland
来源
BIT | 2000年 / 40卷 / 01期
关键词
adaptive quadrature; Gauss quadrature; Kronrod rules;
D O I
10.1023/A:1022318402393
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
First, the basic principles of adaptive quadrature are reviewed. Adaptive quadrature programs being recursive by nature, the choice of a good termination criterion is given particular attention. Two Matlab quadrature programs are presented. The rst is an implementation of the well-known adaptive recursive Simpson rule; the second is new and is based on a four-point Gauss-Lobatto formula and two successive Kronrod extensions. Comparative test results are described and attention is drawn to serious deficiencies in the adaptive routines quad and quad8 provided by Matlab.
引用
收藏
页码:84 / 101
页数:18
相关论文
共 12 条
[1]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[2]  
de Boor C., 1971, WRITING AUTOMATIC IN, P201
[3]  
GANDER W, 1998, 306 ETH I WISS RECH
[4]  
GANDER W, 1993, SEM ANGEW MATH ETH Z
[5]  
Gander W., 1992, COMPUTERMATHEMATIK
[6]   SNIFF - EFFICIENT SELF-TUNING ALGORITHM FOR NUMERICAL-INTEGRATION [J].
GARRIBBA, S ;
QUARTAPELLE, L ;
REINA, G .
COMPUTING, 1978, 20 (04) :363-375
[7]  
Gautschi W., 1997, NUMERICAL ANAL INTRO
[8]  
GAUTSCHI W, 1988, GAUSS KRONROD QUADRA, P39
[9]  
Heath M. T., 1997, SCI COMPUTING
[10]  
Kahaner D. K., 1971, MATH SOFTWARE, P229