On estimates of the Hausdorff dimension of invariant compact sets

被引:16
作者
Pogromsky, AY
Nijmeijer, H
机构
[1] Tech Univ Eindhoven, Dept Elect Engn, NL-5600 MB Eindhoven, Netherlands
[2] Univ Twente, Fac Math Sci, NL-7500 AE Enschede, Netherlands
[3] Tech Univ Eindhoven, Fac Mech Engn, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1088/0951-7715/13/3/324
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present two approaches to estimate the Hausdorff dimension of an invariant compact set of a dynamical system: the method of characteristic exponents (estimates of Kaplan-Yorke type) and the method of Lyapunov functions. In the first approach, using Lyapunov's first method we exploit characteristic exponents to obtain such an estimate. A close relationship with uniform asymptotic stability is hereby established. A second bound for the Hausdorff dimension of an invariant compact set is obtained by exploiting Lyapunov's direct method and thus relies on the use of Lyapunov functions.
引用
收藏
页码:927 / 945
页数:19
相关论文
共 20 条
[1]  
ADRIANOVA L. Y., 1995, INTRO LINEAR SYSTEMS
[2]  
Bhatia N.P., 1970, STABILITY THEORY DYN
[3]  
BOHI P, 1913, Z REINE ANGEW MATH, V144, P284
[4]  
Bylov B. F., 1966, THEORY LYAPUNOV EXPO
[5]  
Courant Richard, 1950, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces
[6]  
DOUADY A, 1980, CR ACAD SCI A MATH, V290, P1135
[7]  
Eden A., 1991, J. Dyn. Differ. Equ, V3, P133
[8]  
Fradkov A., 1998, Introduction to Control of Oscillations and Chaos
[9]  
Gantmacher FR, 1959, APPL THEORY MATRICES
[10]  
Hartman P., 1962, T AM MATH SOC, V104, P154