Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase

被引:138
作者
Buggisch, Martina
Ateghang, Bernadette
Ruhe, Carola
Strobel, Catrin
Lange, Sabine
Wartenberg, Maria
Sauer, Heinrich
机构
[1] Univ Giessen, Dept Physiol, D-35392 Giessen, Germany
[2] GKSS Forschungszentrum Geesthacht GmbH, Dept Cell Biol, Teltow, Germany
关键词
embryonic stem cell; cardiac cell proliferation; reactive oxygen species; NADPH oxidase;
D O I
10.1242/jcs.03386
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
After birth the proliferation of cardiac cells declines, and further growth of the heart occurs by hypertrophic cell growth. In the present study the cell proliferation capacity of mouse embryonic stem (ES) cells versus neonatal cardiomyocytes and the effects of reactive oxygen species (ROS) on cardiomyogenesis and cardiac cell proliferation of ES cells was investigated. Low levels of hydrogen peroxide stimulated cardiomyogenesis of ES cells and induced proliferation of cardiomyocytes derived from ES cells and neonatal mice, as investigated by nuclear translocation of cyclin D1, downregulation of p27(Kip1), phosphorylation of retinoblastoma (Rb), increase of Ki-67 expression and incorporation of BrdU. The observed effects were blunted by the free radical scavengers vitamin E and 2-mercaptoglycin (NMPG). In ES cells ROS induced expression of the cardiac-specific genes encoding alpha-actin, beta-MHC, MLC2a, MLC2v and ANP as well as the transcription factors GATA-4, Nkx-2.5, MEF2C, DTEF-1 and the growth factor BMP-10. During differentiation ES cells expressed the NADPH oxidase isoforms Nox-1, Nox-2 and Nox-4. Treatment of cardiac cells with ROS increased Nox-1, Nox-4, p22-phox, p47-phox and p67-phox proteins as well as Nox-1 and Nox-4 mRNA, indicating feed-forward regulation of ROS generation. Inhibition of NADPH oxidase with diphenylen iodonium chloride (DPI) and apocynin abolished ROS-induced cardiomyogenesis of ES cells. Our data suggest that proliferation of neonatal and ES-cell-derived cardiac cells involves ROS-mediated signalling cascades and point towards an involvement of NADPH oxidase in cardiovascular differentiation of ES cells.
引用
收藏
页码:885 / 894
页数:10
相关论文
共 33 条
[1]   Stem cell differentiation requires a paracrine pathway in the heart [J].
Behfar, A ;
Zingman, LV ;
Hodgson, DM ;
Rauzier, JM ;
Kane, GC ;
Terzic, A ;
Pucéat, M .
FASEB JOURNAL, 2002, 16 (12) :1558-1566
[2]   Evidence that human cardiac myocytes divide after myocardial infarction (Publication with Expression of Concern. See vol. 379, pg. 1870, 2018) [J].
Beltrami, AP ;
Urbanek, K ;
Kajstura, J ;
Yan, SM ;
Finato, N ;
Bussani, R ;
Nadal-Ginard, B ;
Silvestri, F ;
Leri, A ;
Beltrami, CA ;
Anversa, P .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (23) :1750-1757
[3]   Adult cardiac stem cells are multipotent and support myocardial regeneration [J].
Beltrami, AP ;
Barlucchi, L ;
Torella, D ;
Baker, M ;
Limana, F ;
Chimenti, S ;
Kasahara, H ;
Rota, M ;
Musso, E ;
Urbanek, K ;
Leri, A ;
Kajstura, J ;
Nadal-Ginard, B ;
Anversa, P .
CELL, 2003, 114 (06) :763-776
[4]   Differentiation of pluripotent embryonic stem cells into cardiomyocytes [J].
Boheler, KR ;
Czyz, J ;
Tweedie, D ;
Yang, HT ;
Anisimov, SV ;
Wobus, AM .
CIRCULATION RESEARCH, 2002, 91 (03) :189-201
[5]  
Buesen R, 2004, ALTEX-ALTERN TIEREXP, V21, P15
[6]   Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells [J].
Cho, Young Min ;
Kwon, Sujin ;
Pak, Youngmi Kim ;
Seol, Hye Won ;
Choi, Young Min ;
Park, Do Joon ;
Park, Kyong Soo ;
Lee, Hong Kyu .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 348 (04) :1472-1478
[7]   NAD(P)H oxidase 4 mediates transforming growth factor-β1-induced differentiation of cardiac fibroblasts into myofibroblasts [J].
Cucoranu, I ;
Clempus, R ;
Dikalova, A ;
Phelan, PJ ;
Ariyan, S ;
Dikalov, S ;
Sorescu, D .
CIRCULATION RESEARCH, 2005, 97 (09) :900-907
[8]   Myocyte and myogenic stem cell transplantation in the heart [J].
Dowell, JD ;
Rubart, M ;
Pasumarthi, KBS ;
Soonpaa, MH ;
Field, LJ .
CARDIOVASCULAR RESEARCH, 2003, 58 (02) :336-350
[9]   Novel NAD(P)H oxidases in the cardiovascular system [J].
Griendling, KK .
HEART, 2004, 90 (05) :491-493
[10]   Stem cell therapy for ischemic heart disease [J].
Hassink, RJ ;
Dowell, JD ;
de la Rivière, AB ;
Doevendans, PA ;
Field, LJ .
TRENDS IN MOLECULAR MEDICINE, 2003, 9 (10) :436-441