Nonequilibrium probabilistic dynamics of the logistic map at the edge of chaos -: art. no. 254103

被引:95
作者
Borges, EP
Tsallis, C
Añaños, GFJ
de Oliveira, PMC
机构
[1] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[2] Univ Fed Bahia, Escola Politecn, BR-40210630 Salvador, BA, Brazil
[3] Univ Nacl Trujillo, Dept Fis, Trujillo, Peru
[4] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
关键词
D O I
10.1103/PhysRevLett.89.254103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider nonequilibrium probabilistic dynamics in logisticlike maps x(t+1)=1-aparallel tox(t)parallel to(z), (z>1) at their chaos threshold: We first introduce many initial conditions within one among W>1 intervals partitioning the phase space and focus on the unique value q(sen)<1 for which the entropic form S-q=(1-Sigma(i=1)(W)p(i)(q))/(q-1) linearly increases with time. We then verify that S-qsen(t)-S-qsen(infinity) vanishes like t(rel)(-1/[q)(W)-1] [q(rel)(W)>1]. We finally exhibit a new finite-size scaling, q(rel)(infinity)-q(rel)(W)proportional toW(sen)(-\q)\. This establishes quantitatively, for the first time, a long pursued relation between sensitivity to the initial conditions and relaxation, concepts which play central roles in nonextensive statistical mechanics.
引用
收藏
页数:4
相关论文
共 30 条
[1]  
[Anonymous], NONEXTENSIVE STAT ME
[2]   Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions [J].
Anteneodo, C ;
Tsallis, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5313-5316
[3]   PDF of velocity fluctuation in turbulence by a statistics based on generalized entropy [J].
Arimitsu, T ;
Arimitsu, N .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) :218-226
[4]  
Baldovin F, 2002, PHYS REV E, V66, DOI [10.1103/PhysRevE.66.045104, 10.1103/PhysrevE.66.045104]
[5]   Sensitivity to initial conditions at bifurcations in one-dimensional nonlinear maps: Rigorous nonextensive solutions [J].
Baldovin, F ;
Robledo, A .
EUROPHYSICS LETTERS, 2002, 60 (04) :518-524
[6]   Why Tsallis statistics? [J].
Baranger, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) :27-31
[7]  
Barber M. N., 1983, PHASE TRANSITIONS CR, V8
[8]   Dynamical foundations of nonextensive statistical mechanics [J].
Beck, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (18) :180601-1
[9]   Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow [J].
Beck, C ;
Lewis, GS ;
Swinney, HL .
PHYSICAL REVIEW E, 2001, 63 (03) :353031-353034
[10]   A nonextensive thermodynamical equilibrium approach in e+e- → hadrons [J].
Bediaga, I ;
Curado, EMF ;
de Miranda, JM .
PHYSICA A, 2000, 286 (1-2) :156-163