Vascular endothelial growth factor and related molecules in acute lung injury

被引:142
作者
Mura, M
dos Santos, CC
Stewart, D
Liu, MY
机构
[1] Univ Hlth Network, Thorac Surg Res Labs, Toronto Gen Res Inst, Toronto, ON M5G 2C4, Canada
[2] St Michaels Hosp, Dept Crit Care Med, Toronto, ON M5B 1W8, Canada
[3] St Michaels Hosp, Dept Cardiol, Toronto, ON M5B 1W8, Canada
[4] St Michaels Hosp, Div Mol & Cell Biol Res, Toronto, ON M5B 1W8, Canada
[5] Univ Toronto, Inst Med Sci, Fac Med, Toronto, ON M5S 1A8, Canada
关键词
acute respiratory distress syndrome; pulmonary edema; angiopoietins; hypoxia; hyperoxia;
D O I
10.1152/japplphysiol.00202.2004
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
VEGFs and their receptors have been implicated in the regulation of vascular permeability in many organ systems, including the lung. Increased permeability and interstitial and pulmonary edema are prominent features of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Extrapolating data from other organ systems and animal experiments have suggested that overexpression of VEGF functions primarily as proinjurious molecules in the lung. Recent data, from animal models as well as from patients with ARDS, have shown decreased levels of VEGF in the lung. The role of VEGF and related molecules in ALI/ARDS is, therefore, controversial: what has become clear is that there are many unique features in the regulation of pulmonary vascular permeability and in VEGF expression in the lung. In this review, we explore a growing body of literature looking at the expression and function of VEGF and related molecules in different models of ALI and in patients with ALI/ARDS. Novel evidence points to a potential role of VEGF in promoting repair of the alveolar-capillary membrane during recovery from ALI/ARDS. Understanding the role of VEGF in this disease process is crucial for developing new therapeutic strategies for ALI/ARDS.
引用
收藏
页码:1605 / 1617
页数:13
相关论文
共 147 条
[1]   Role of Raf in vascular protection from distinct apoptotic stimuli [J].
Alavi, A ;
Hood, JD ;
Frausto, R ;
Stupack, DG ;
Cheresh, DA .
SCIENCE, 2003, 301 (5629) :94-96
[2]   Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization [J].
Asahara, T ;
Chen, DH ;
Takahashi, T ;
Fujikawa, K ;
Kearney, M ;
Magner, M ;
Yancopoulos, GD ;
Isner, JM .
CIRCULATION RESEARCH, 1998, 83 (03) :233-240
[3]   Role of PIGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1 [J].
Autiero, M ;
Waltenberger, J ;
Communi, D ;
Kranz, A ;
Moons, L ;
Lambrechts, D ;
Kroll, J ;
Plaisance, S ;
De Mol, M ;
Bono, F ;
Kliche, S ;
Fellbrich, G ;
Ballmer-Hofer, K ;
Maglione, D ;
Mayr-Beyrle, U ;
Dewerchin, M ;
Dombrowski, S ;
Stanimirovic, D ;
Van Hummelen, P ;
Dehio, C ;
Hicklin, DJ ;
Persico, G ;
Herbert, JM ;
Communi, D ;
Shibuya, M ;
Collen, D ;
Conway, EM ;
Carmeliet, P .
NATURE MEDICINE, 2003, 9 (07) :936-943
[4]   The specificity of receptor binding by vascular endothelial growth factor-D is different in mouse and man [J].
Baldwin, ME ;
Catimel, B ;
Nice, EC ;
Roufail, S ;
Hall, NE ;
Stenvers, KL ;
Karkkainen, MJ ;
Alitalo, K ;
Stacker, SA ;
Achen, MG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (22) :19166-19171
[5]  
Bardales RH, 1996, AM J PATHOL, V149, P845
[6]   Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1 [J].
Barleon, B ;
Sozzani, S ;
Zhou, D ;
Weich, HA ;
Mantovani, A ;
Marme, D .
BLOOD, 1996, 87 (08) :3336-3343
[7]   DIFFERENTIAL EXPRESSION OF THE 2 VEGF RECEPTORS FLT AND KDR IN PLACENTA AND VASCULAR ENDOTHELIAL-CELLS [J].
BARLEON, B ;
HAUSER, S ;
SCHOLLMANN, C ;
WEINDEL, K ;
MARME, D ;
YAYON, A ;
WEICH, HA .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1994, 54 (01) :56-66
[8]   Regulation of microvascular permeability by vascular endothelial growth factors [J].
Bates, DO ;
Hillman, NJ ;
Williams, B ;
Neal, CR ;
Pocock, TM .
JOURNAL OF ANATOMY, 2002, 200 (06) :581-597
[9]   Vascular endothelial growth factor and microvascular permeability [J].
Bates, DO ;
Lodwick, D ;
Williams, B .
MICROCIRCULATION, 1999, 6 (02) :83-96
[10]   Differential regulation of diverse physiological responses to VEGF in pulmonary endothelial cells [J].
Becker, PM ;
Verin, AD ;
Booth, MA ;
Liu, F ;
Birukova, A ;
Garcia, JGN .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2001, 281 (06) :L1500-L1511