Overexpression of the protein phosphatase 2A regulatory subunit Bγ promotes neuronal differentiation by activating the MAP kinase (MAPK) cascade

被引:69
作者
Strack, S [1 ]
机构
[1] Univ Iowa, Coll Med, Dept Pharmacol, Iowa City, IA 52242 USA
关键词
D O I
10.1074/jbc.M203767200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein serine/threonine phosphatase 2A (PP2A) is a multifunctional regulator of cellular signaling. Variable regulatory subunits associate with a core dimer of scaffolding and catalytic subunits and are postulated to dictate substrate specificity and subcellular location of the heterotrimeric PP2A holoenzyme. The role of brain-specific, regulatory subunits in neuronal differentiation and signaling was investigated in the PC6-3 subline of PC12 cells. Endogenous Bbeta, Bgamma, and B'beta protein expression was induced during nerve growth factor (NGF)-mediated neuronal differentiation. Transient expression of Bgamma, but not other PP2A regulatory subunits, facilitated neurite outgrowth in the absence and presence of NGF. Tetracycline-inducible expression of Bgamma caused growth arrest and neurofilament expression, further evidence that PP2A/Bgamma can promote differentiation. In PC6-3 cells, but not non-neuronal cell lines, Bgamma specifically promoted long lasting activation of the mitogen-activated protein (MAP) kinase cascade, a key mediator of neuronal differentiation. Pharmacological and dominant-negative inhibition and kinase assays indicate that Bgamma promotes neuritogenesis by stimulating the MAP kinase cascade downstream of the TrkA NGF receptor but upstream or at the level of the B-Raf kinase. Mutational analyses demonstrate that the divergent N terminus is critical for Bgamma activity. These studies implicate PP2A/Bgamma as a positive regulator of MAP kinase signaling in neurons.
引用
收藏
页码:41525 / 41532
页数:8
相关论文
共 62 条
[1]   Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation [J].
Abraham, D ;
Podar, K ;
Pacher, M ;
Kubicek, M ;
Welzel, N ;
Hemmings, BA ;
Dilworth, SM ;
Mischak, H ;
Kolch, W ;
Baccarini, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (29) :22300-22304
[2]  
ALESSI DR, 1995, METHOD ENZYMOL, V255, P279
[3]   INACTIVATION OF P42 MAP KINASE BY PROTEIN PHOSPHATASE 2A AND A PROTEIN-TYROSINE-PHOSPHATASE, BUT NOT CL100, IN VARIOUS CELL-LINES [J].
ALESSI, DR ;
GOMEZ, N ;
MOORHEAD, C ;
LEWIS, T ;
KEYSE, SM ;
COHEN, P .
CURRENT BIOLOGY, 1995, 5 (03) :283-295
[4]   Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B′ subunits in active complexes and induces nuclear aberrations and a G1/S phase cell cycle arrest [J].
Bennin, DA ;
Don, ASA ;
Brake, T ;
McKenzie, JL ;
Rosenbaum, H ;
Ortiz, L ;
DePaoli-Roach, AA ;
Horne, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (30) :27449-27467
[5]  
Campagne MV, 1999, MOL BRAIN RES, V64, P1
[6]   OKADAIC ACID, A PROTEIN PHOSPHATASE INHIBITOR, INHIBITS NERVE GROWTH FACTOR-DIRECTED NEURITE OUTGROWTH IN PC12 CELLS [J].
CHIOU, JY ;
WESTHEAD, EW .
JOURNAL OF NEUROCHEMISTRY, 1992, 59 (05) :1963-1966
[7]   Positive and negative regulation of Raf kinase activity and function by phosphorylation [J].
Chong, H ;
Lee, J ;
Guan, KL .
EMBO JOURNAL, 2001, 20 (14) :3716-3727
[8]   ACTIVATION OF MAP KINASE KINASE IS NECESSARY AND SUFFICIENT FOR PC12 DIFFERENTIATION AND FOR TRANSFORMATION OF NIH 3T3 CELLS [J].
COWLEY, S ;
PATERSON, H ;
KEMP, P ;
MARSHALL, CJ .
CELL, 1994, 77 (06) :841-852
[9]   P42 MITOGEN-ACTIVATED PROTEIN-KINASE IN BRAIN - PROMINENT LOCALIZATION IN NEURONAL CELL-BODIES AND DENDRITES [J].
FIORE, RS ;
BAYER, VE ;
PELECH, SL ;
POSADA, J ;
COOPER, JA ;
BARABAN, JM .
NEUROSCIENCE, 1993, 55 (02) :463-472
[10]  
GAUSE KC, 1993, J BIOL CHEM, V268, P16124